Problem 1. If a, b, c are positive real numbers, prove that

$$\frac{a^2 + b^2}{a + b} + \frac{b^2 + c^2}{b + c} + \frac{c^2 + a^2}{c + a} \geqslant a + b + c \,.$$

Problem 2. Let ABC be an equilateral triangle and let E be a point on the line segment BC. Let ℓ be the line through A parallel to BC and let K be the point on ℓ such that KE is perpendicular to BC. The circle with centre K and radius KE intersects the sides AB and AC at M and N respectively. The perpendicular on AB at M intersects ℓ at D, and the perpendicular on AC at N intersects ℓ at F.

Show that the point of intersection of the angle bisectors of angles $\angle MDA$ and $\angle NFA$ belongs on the line *KE*. (Source: JBMO Shortlist 2022-G4)

Problem 3. Anna and Bob, with Anna starting first, alternately colour the integers of the set $S = \{1, 2, ..., 2022\}$ red or blue. At their turn, each one can colour any uncoloured number of *S* they wish, with any colour they wish. The game ends when all numbers of *S* get coloured.

Let *N* be the number of pairs $(a, b) \in S^2$ where a, b have the same colour, and b-a = 3. Anna wishes to maximize *N*. What is the maximum value of *N* that she can achieve regardless of how Bob plays? (Source: JBMO Shortlist 2022-C1)

Problem 4. Consider the sequence u_0, u_1, u_2, \ldots defined by $u_0 = 0, u_1 = 1$ and

$$u_n = 6u_{n-1} + 7u_{n-2}$$

for $n \ge 2$. Show that there are no non-negative integers a, b, c, n such that

$$ab(a+b)(a^2+ab+b^2) = c^{2022}+42 = u_n$$

(Source: JBMO Shortlist 2022-N4)