Problem 1. If a, b, c are positive real numbers, prove that

$$
\frac{a^{2}+b^{2}}{a+b}+\frac{b^{2}+c^{2}}{b+c}+\frac{c^{2}+a^{2}}{c+a} \geqslant a+b+c .
$$

Problem 2. Let $A B C$ be an equilateral triangle and let E be a point on the line segment $B C$. Let ℓ be the line through A parallel to $B C$ and let K be the point on ℓ such that $K E$ is perpendicular to $B C$. The circle with centre K and radius $K E$ intersects the sides $A B$ and $A C$ at M and N respectively. The perpendicular on $A B$ at M intersects ℓ at D, and the perpendicular on $A C$ at N intersects ℓ at F.

Show that the point of intersection of the angle bisectors of angles $\angle M D A$ and $\angle N F A$ belongs on the line $K E$.
(Source: JBMO Shortlist 2022-G4)

Problem 3. Anna and Bob, with Anna starting first, alternately colour the integers of the set $S=\{1,2, \ldots, 2022\}$ red or blue. At their turn, each one can colour any uncoloured number of S they wish, with any colour they wish. The game ends when all numbers of S get coloured.

Let N be the number of pairs $(a, b) \in S^{2}$ where a, b have the same colour, and $b-a=3$.
Anna wishes to maximize N. What is the maximum value of N that she can achieve regardless of how Bob plays?
(Source: JBMO Shortlist 2022-C1)

Problem 4. Consider the sequence $u_{0}, u_{1}, u_{2}, \ldots$ defined by $u_{0}=0, u_{1}=1$ and

$$
u_{n}=6 u_{n-1}+7 u_{n-2}
$$

for $n \geqslant 2$. Show that there are no non-negative integers a, b, c, n such that

$$
a b(a+b)\left(a^{2}+a b+b^{2}\right)=c^{2022}+42=u_{n}
$$

(Source: JBMO Shortlist 2022-N4)

