Problem 1 - Solution 1. We have

$$
\frac{a^{2}+b^{2}}{a+b}-\frac{a+b}{2}=\frac{2\left(a^{2}+b^{2}\right)-(a+b)^{2}}{2(a+b)}=\frac{a^{2}+b^{2}-2 a b}{2(a+b)}=\frac{(a-b)^{2}}{2(a+b)} \geqslant 0 .
$$

Therefore

$$
\frac{a^{2}+b^{2}}{a+b}+\frac{b^{2}+c^{2}}{b+c}+\frac{c^{2}+a^{2}}{c+a} \geqslant \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c
$$

Problem 1-Solution 2. From Cauchy-Schwarz we have

$$
\left(1^{2}+1^{2}\right)\left(a^{2}+b^{2}\right) \geqslant(a+b)^{2} \Longrightarrow \frac{a^{2}+b^{2}}{a+b} \geqslant \frac{a+b}{2}
$$

We can now proceed as in Solution 1.

Problem 2 - Solution 1. Let N^{\prime} be the symmetric point of N with respect to ℓ. Since $\angle D A B=\angle B A C=\angle C A F=60^{\circ}$, then N^{\prime} belongs on $A B$. Since $K N=K N^{\prime}$, then N^{\prime} belongs on the circle with centre K and radius $K E$. Furthermore $N A N^{\prime}$ is isosceles with $\angle N A N^{\prime}=120^{\circ}$ and $\angle A N N^{\prime}=\angle A N^{\prime} N=30^{\circ}$. Therefore $\angle M K N=2 \angle M N^{\prime} N=60^{\circ}$. Thus A, K, M, N are concyclic, say on the circle ω.
Let Z be the point of intersection of $D M$ and $K E$. Since $\angle Z M A=90^{\circ}=\angle Z K A$, then $A K Z M$ is cyclic and so Z belongs on ω. Similarly, if Z^{\prime} is the point of intersection of $F N$ with $K E$, then Z^{\prime} also belongs on ω. But $K E$ can have only one other point of intersection with ω apart from K, therefore $Z=Z^{\prime}$.

We have $\angle Z D F=\angle M D A=30^{\circ}=\angle N F A=\angle Z F D$. So the triangle $D Z F$ is isosceles. Since $Z K$ is the altitude of the triangle $D Z F$, it is also a bisector. So the incenter of the triangle $D Z F$ belongs on $E K$ and therefore the required conclusion follows.

Problem 2-Solution 2. We start by showing that A, K, M, N are concyclic, say on the circle ω.

We may assume that E is not the midpoint of $B C$ as otherwise $A=K$ and the required conclusion is immediate. Without loss of generality we have $E B<E C$. From sine law in the triangles $K A M$ and $K A N$ we have

$$
\frac{K A}{\sin (\angle K M A)}=\frac{K M}{\sin \left(60^{\circ}\right)}=\frac{K N}{\sin \left(60^{\circ}\right)}=\frac{K A}{\sin (\angle K N A)}
$$

Since the angles $\angle K M A$ and $\angle K N A$ are acute (the angles $\angle K A N$ and $A K M$ are obtuse) then $\angle K M A=\angle K N A$. So A, K, M, N are concyclic.

Let A^{\prime} be the antipodal point of A with respect to ω. Then $\angle A^{\prime} M A=\angle A^{\prime} N A=90^{\circ}$ and so A^{\prime} is the point of intersection of $D M$ and $F N$. Furthermore $\angle A^{\prime} K A=90^{\circ}$, so A^{\prime} belongs on $E K$.

Since $K M=K N$ and $\angle M K N=\angle M A N=60^{\circ}$, then $K M N$ is equilateral. Then $\angle M A^{\prime} K=\angle M N K=60^{\circ}=\angle N M K=\angle N A^{\prime} K$. So $A^{\prime} K$ bisects $\angle D A^{\prime} F$. Therefore the incenter of triangle $D A^{\prime} F$ belongs on $E K$ and the required conclusion follows.

Problem 3. We show that Anna can achieve $N=1008$ but not a bigger value.
Let $A=\{1,4,7, \ldots, 2020\}, B=\{2,5,8, \ldots, 2021\}$ and $C=\{3,6,9, \ldots, 2022\}$.

In each of her moves, Anna tries to find two numbers at distance 3 with one of them being coloured and the other uncoloured. If she can achieve that, then she colours the uncoloured number with the same colour as that of the coloured one.

Anna fails in the above task if and only if in each of the sets A, B, C either all numbers are coloured or all numbers are uncoloured. This can occur at most three times.

So Anna can succeed in her above task at least 1011-3 times. Each time that she succeeds, she increases the value of N by 1 . So she can definitely achieve $N \geqslant 1008$.

Let M be the number of pairs (a, b) with $a, b \in S$ having a different colour and $b-$ $a=3$. At the end of the game we will have $M+N=2019$ since each of the pairs $(1,4),(2,5), \ldots,(2019,2022)$ contributes 1 to either M or N.

Bob considers that 2011 pairs

$$
(1,4),(2,5),(3,6),(7,10),(8,11),(9,12), \ldots,(2017,2020),(2018,2021),(2019,2022),
$$

which are pairwise disjoint. If Anna colours the number x, then Bob gives a different colour to the number that belongs to the same pair as x.

With this strategy Bob can achieve $M \geqslant 1$ which gives $N \leqslant 2019-1011=1008$.

Problem 4. We first observe that

$$
\begin{aligned}
(a+b)^{5}-a^{5}-b^{5} & =5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4} \\
& =5 a b\left(a^{3}+2 a^{2} b+2 a b^{2}+b^{3}\right) \\
& =5 a b(a+b)\left(a^{2}+a b+b^{2}\right) .
\end{aligned}
$$

Since $x^{5} \equiv\{-1,0,1\} \bmod 11$, then $(a+b)^{5}-a^{5}-b^{5} \equiv 0, \pm 1, \pm 2, \pm 3 \bmod 11$, therefore

$$
\begin{equation*}
a b(a+b)\left(a^{2}+a b+b^{2}\right) \equiv-2\left((a+b)^{5}-a^{5}-b^{5}\right) \equiv 0, \pm 2, \pm 4, \pm 6 \bmod 11 . \tag{1}
\end{equation*}
$$

From Fermat's Little Theorem, if $11 \nmid c$, then $c^{2022}=\left(c^{10}\right)^{202} \cdot c^{2} \equiv c^{2} \equiv 1,3,4,5,9 \bmod 11$. So for every integer c we have $c^{2022} \equiv 0,1,3,4,5,9 \bmod 11$. Since in addition $42 \equiv-2 \bmod 11$, then

$$
\begin{equation*}
c^{2022}+42 \equiv 1,2,3,7,9,10 \bmod 11 . \tag{2}
\end{equation*}
$$

Finally, the first terms of the sequence u_{n} modulo 11 are $0,1,6,-1,3,0,-1,-6,1,-3,0,1$. Therefore the sequence is periodic modulo 11 and

$$
\begin{equation*}
u_{n} \equiv\{0, \pm 1, \pm 3, \pm 5\} \bmod 11 \tag{3}
\end{equation*}
$$

Since (1), (2), (3) cannot all be satisfied concurrently, then the equation has no solutions in non-negative integers.

