Problem 1. We have

$$
\begin{aligned}
x^{2}-y^{2}=5 x & \Longleftrightarrow x^{2}-5 x-y^{2}=0 \\
& \Longleftrightarrow\left(x-\frac{5}{2}\right)^{2}-y^{2}=\frac{25}{4} \\
& \Longleftrightarrow(2 x-5)^{2}-4 y^{2}=25 \\
& \Longleftrightarrow(2 x-5-2 y)(2 x-5+2 y)=25 .
\end{aligned}
$$

Writing $a=2 x-5-2 y$ and $b=2 x-5+2 y$ we must have

$$
(a, b) \in\{(1,25),(5,5),(25,1),(-1,-25),(-5,-5),(-25,-1)\}
$$

Since $a+b=2(2 x-5)$, then $x=(a+b+10) / 4$. Since $b-a=4 y$, then $y=(b-a) / 4$. So we end up with the solutions

$$
(x, y) \in\{(9,6),(5,0),(9,-6),(-4,-6),(0,0),(-4,6)\}
$$

Problem 2. We consider the following cases:

- If $p=2$, then $2 p^{2}+5^{p-1}=8+5=13$ is prime.
- If $p=3$, then $2 p^{2}+5^{p-1}=18+25=43$ is prime.
- If $p>3$, then $3 \nmid p^{2}$ and so $p^{2} \equiv 1 \bmod 3$. Furthermore, $p$ is odd, so $p=2 k+1$, therefore $5^{p-1}=5^{2 k}=25^{k} \equiv 1 \bmod 3$. Thus

$$
2 p^{2}+5^{p-1} \equiv 2 \cdot 1+1 \equiv 0 \bmod 3
$$

So $2 p^{2}+5^{p-1}$ is not prime.

## Problem 3 - Solution 1.

Let $(\varepsilon)$ be the parallel through $C$ to $A E$ and let $Z$ be the point of intersection of $(\varepsilon)$ with $B A$. We have

$$
\angle A Z C=\angle B A E=\angle C D A
$$

so the triangle $D C Z$ is isosceles with $C D=C Z$.
From Thales Theorem on the triangle $B C Z$ we have

$$
2=\frac{B E}{E C}=\frac{B A}{A Z}=\frac{2 A D}{A Z} \Longrightarrow A Z=A D
$$



So $C A$ is a median of the isosceles triangle $D C Z$ and therefore it's also an altitude. Thus $\angle B A C=90^{\circ}$.

## Problem 3 - Solution 2.

Let $M$ be the point of intersection of $A E$ and $C D$. If $(M A D)=x$, then we must also have $(M B D)=x$. If $(M C E)=y$, then we must also have $(M B E)=2 y$. Assume also that $(M A C)=z$.

Since $(A B E)=2(A C E)$ then $2 x+2 y=2(z+y)$ and therefore $x=z$. So $(M A C)=(M A D)$
 which implies that $M C=M D$. Since the triangle $M A D$ is isosceles, we also have $M D=M A$.

Thus the circle with centre $M$ and radius $M A=M C=M D$ has diameter $C D$ and passes through $A$. It follows that $\angle B A C=90^{\circ}$.

## Problem 4.

(a) Alice wins. Up to the choice of $a_{2019}$ by Bob, Alice plays arbitrarily. Afterwards, she chooses $a_{2020}$ and $a_{2021}$ so that

$$
a_{1}-a_{2}+\cdots-a_{2020}+a_{2021} \equiv 0 \bmod 11
$$

She can definitely achieve that as follows: It is enough for every $\ell \in\{0,1,2, \ldots, 10\}$ to be able to choose $a_{2020}$ and $a_{2021}$ such that $a_{2020}-a_{2021} \equiv \ell \bmod 11$.

For $\ell=0,1, \ldots, 9$ she can choose $a_{2020}=\ell$ and $a_{2021}=0$. For $\ell=10$ she can choose $a_{2020}=0$ and $a_{2021}=1$.

Afterwards, whatever the choice of Bob for $a_{2022}$, Alice chooses $a_{2023}=a_{2022}$. We then have

$$
a_{1}-a_{2}+\cdots-a_{2022}+a_{2023} \equiv 0 \bmod 11
$$

and so the number is a multiple of 11 .
(b) Bob wins. Up to the choice of $a_{2021}$ by Alice, Bob plays arbitrarily. Afterwards, he chooses $a_{2022}$ so that

$$
a_{1}+a_{2}+\cdots+a_{2022} \equiv 2 \bmod 3
$$

He can definitely achieve that as follows: Let $S=a_{1}+\cdots+a_{2021}$. If $S \equiv 0 \bmod 3$ he chooses $a_{2022}=2$, if $S \equiv 1 \bmod 3$ he chooses $a_{2022}=1$, and if $S \equiv 2 \bmod 3$ he chooses $a_{2022}=0$.
If Alice wants to make the number a multiple of 5 , she is forced to choose $a_{2023}=0$ or $a_{2023}=5$. If she chooses $a_{2023}=0$ we have

$$
a_{1}+a_{2}+\cdots+a_{2023} \equiv 2 \bmod 3,
$$

while if she chooses $a_{2023}=5$ we have

$$
a_{1}+a_{2}+\cdots+a_{2023} \equiv 1 \bmod 3
$$

In both cases the number is not a multiple of 3 and therefore Bob wins.

