Problem 1. We have

$$
3 \cdot 2^{k}=n^{2}-1=(n-1)(n+1)
$$

The left-hand-side is an even number. In order for the right-hand-side to be an even number n,must be odd. Then $n-1$ and $n+1$ are both even. Let d be the greatest common divisor of $n-1$ and $n+1$. Then d divides $n-1$ and $n+1$ so it also divides their difference $(n+1)-(n-1)=2$. Since $n+1$ and $n-1$ are both even, then we must have $d=2$.

So one of $n-1, n+1$ is a multiple of 2 but not of 4 . Since it divides $3 \cdot 2^{k}$ it should therefore be equal to 2 or 6 .

- If $n-1=2$, then $n=3$ and $3 \cdot 2^{k}=8$, contradiction.
- If $n+1=2$, then $n=1$ and $3 \cdot 2^{k}=0$, contradiction.
- If $n-1=6$, then $n=7$ and $3 \cdot 2^{k}=48$ which gives $k=4$.
- If $n+1=6$, then $n=5$ and $3 \cdot 2^{k}=24$ which gives $k=3$.

Problem 2. We have

$$
\begin{aligned}
& \frac{a^{2}-a-c}{b}+\frac{b^{2}-b-c}{a}=a+b+2 \\
\Longrightarrow & \left(\frac{a^{2}-a-c}{b}-1\right)+\left(\frac{b^{2}-b-c}{a}-1\right)=a+b \\
\Longrightarrow & \frac{a^{2}-a-c-b}{b}+\frac{b^{2}-b-c-a}{a}=a+b \\
\Longrightarrow & \frac{a^{2}-(a+b+c)}{b}+\frac{b^{2}-(a+b+c)}{a}=a+b \\
\Longrightarrow & a^{3}+b^{3}-(a+b)(a+b+c)=a b(a+b) \\
\Rightarrow & a^{3}+b^{3}=(a+b)(a b+a+b+c) .
\end{aligned}
$$

But

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

and since $a+b \neq 0$ we get

$$
a b+a+b+c=a^{2}-a b+b^{2}
$$

Therefore

$$
a+b+c=a^{2}-2 a b+b^{2}=(a-b)^{2}
$$

which is a perfect square as required.

Problem 3. Let T_{1} and T_{2} be the points of intersection of the tangent (ε) with the circles $\left(K_{1}, R_{1}\right)$ and $\left(K_{2}, R_{2}\right)$ respectively. We draw the common tangent at A and let E be the point of intersection with (ε).

The triangles $K_{1} T_{1} E$ and $K_{1} A E$ are equal as they are right-angled with $K E$ as a common hypotenuse. The same holds for the triangles $K_{2} T_{2} E$ and $K_{2} A E$. Therefore

$$
\angle T_{1} E K_{1}=\angle K_{1} E A \quad \text { and } \quad \angle T_{2} E K_{2}=\angle K_{2} E A
$$

Then

$$
\begin{aligned}
180^{\circ} & =\angle T_{1} E K_{1}+\angle K_{1} E A+\angle T_{2} E K_{2}+\angle K_{2} E A \\
& =2\left(\angle K_{1} E A+\angle K_{2} E A\right)=2\left(\angle K_{1} E K_{2}\right) .
\end{aligned}
$$

So the triangle $K_{1} E K_{2}$ is right-angled. If M is the midpoint of $K_{1} K_{2}$ then $E M$ is the median of the right-angled triangle, therefore $K_{1} K_{2}=2 E M$.
It is enough to prove that $E A B M$ is a parallelogram since then we will have $K_{1} K_{2}=$ $2 E M=2 A B$.

Since $E A$ and $B M$ are perpendicular to $K_{1} K_{2}$, then $E A \| B M$. Since $M E=M K_{1}$, then $\angle M E K_{1}=\angle M K_{1} E=\angle A K_{1} E$. Since the triangles $K_{1} T_{1} E$ and $K_{1} A E$ are equal, then $\angle A K_{1} E=\angle T_{1} K_{1} E$. So $\angle M E K_{1}=\angle T_{1} K_{1} E$ and therefore $M E \| K_{1} T_{1}$. We also have that $A B \| K_{1} T_{1}$ since both lines are perpendicular to (ε).
Since $A B \| M E$ and since also $E A \| B M$, then $E A B M$ is a parallelogram as we wanted to show.

Problem 4. Let $n_{1}=a_{1}+b_{1}, \ldots, n_{2023}=a_{2023}+b_{2023}$ be the sums that are written on the board. We have

$$
\begin{aligned}
n_{1}+n_{2}+\cdots+n_{2023} & =\left(a_{1}+b_{1}\right)+\cdots+\left(a_{2023}+b_{2023}\right) \\
& =\left(a_{1}+\cdots+a_{2023}\right)+\left(b_{1}+\cdots+b_{2023}\right) \\
& =(1+2+\cdots+2023)+(-1-2-\cdots-2023)=0
\end{aligned}
$$

The number $n_{1}+n_{2}+\cdots+n_{2023}$ is even, therefore at least one out of n_{1}, \ldots, n_{2023} must be even. Indeed otherwise, n_{1}, \ldots, n_{2023} would all be odd. But then $n_{1}+n_{2}+\cdots+n_{2023}$ would also be odd, a contradiction.
So $2023-2^{n}=n_{1} n_{2} \cdots n_{2023}$ must be even. Then 2^{n} must be odd, which happens only when $n=0$.

The value of $n=0$ is possible. E.g. if from box A we pick the numbers $1,2, \ldots, 2023$ in this order, and from box B. we pick the numbers $-2,-3, \ldots,-2023,-1$ in this order, then $n_{1}=\cdots=n_{2022}=-1, n_{2023}=2022$ and therefore $n_{1} \cdots n_{2023}=2022=2023-2^{0}$.

