SOLUTIONS

Problem 1, junior level. Find all integers $n \ge 0$ for which there exist integers a and b such that $a + 2^b = n^{2022}$ and $a^2 + 4^b = n^{2023}$.

Flavian Georgescu

Solution. The only number is n = 1.

To this end, notice that $2(a^2 + 4^b) \ge (a + 2^b)^2$ to conclude that $2n^{2023} \ge n^{4044}$, hence n = 0 or n = 1. The case n = 0 leads to no solution, while n = 1 holds for a = 0 and b = 0.

Problem 2, junior level. Let $n \in \mathbb{N}$, $n \geq 4$ and a_1, a_2, \ldots, a_n be real numbers such that

$$a_k^3 = a_{k+1}^2 + a_{k+2}^2 + a_{k+3}^2$$

for all $k \in \{1, 2, ..., n\}$ – indices are considered modulo n. Show that $a_1 = a_2 = ... = a_n$.

Flavian Georgescu

Solution. Suppose there exists $i \in \{1, 2, ..., n\}$ for which $a_i = 0$. Clearly $a_{i+1} = 0$, and consequently $a_1 = a_2 = ... = a_n = 0$.

Suppose now that $a_i \neq 0$ for all $i \in \{1, 2, ..., n\}$. Choose $p, q \in \{1, 2, ..., n\}$ such that $a_q \leq a_i \leq a_p$ for all $i \in \{1, 2, ..., n\}$.

Now $a_p^3=a_{p+1}^2+a_{p+2}^2+a_{p+3}^2\leq 3a_p^2$ and $a_q^3=a_{q+1}^2+a_{q+2}^2+a_{q+3}^2\geq 3a_q^2$ yield $a_p\leq 3\leq a_q$, therefore $a_1=a_2=\ldots=a_n=3$.

The proof is complete.

Problem 3, junior level & problem 1, senior level. A domino is a rectangle formed by two unit squares that share a common side. A number of 18 dominoes fit together to tile a 6×6 square. Show that some line crossing the interior of the square crosses the interior of no domino. Is it possible that such a line be unique?

Solution. Let the square be $[0,6] \times [0,6]$. We first show that either some grid-vertical x=i, i=1,2,3,4,5, or some grid-horizontal y=j, j=1,2,3,4,5, crosses no tile. Let m_i and n_j be the number of tiles crossed by the grid-vertical x=i and the grid-horizontal y=j, respectively. Clearly, a grid-vertical crosses only horizontal tiles, and a grid-horizontal crosses only vertical tiles.

Since every horizontal tile is crossed by a single grid-vertical, the number of horizontal tiles is $m_1+m_2+m_3+m_4+m_5$. Similarly, the number of vertical tiles is $n_1+n_2+n_3+n_4+n_5$. Hence the number of tiles is $m_1+m_2+m_3+m_4+m_5+n_1+n_2+n_3+n_4+n_5=18$. Consequently, either some $m_i \le 1$, i=1,2,3,4,5, or some $n_i \le 1$, j=1,2,3,4,5.

Now, for each positive integer $i \leq 5$, the rectangle $[0,i] \times [0,6]$ consists of a certain number of tiles and m_i unit cells, the left halves of the horizontal tiles the grid-vertical x=i crosses. Since the area of each $[0,i] \times [0,6]$ and the area of each tile are both even, so is each m_i . Similarly, each n_j is even.

Finally, by the conclusion of the preceding paragraph, either some $m_i = 0$, i = 1, 2, 3, 4, 5, in which case the corresponding grid-vertical x = i crosses no tile; or some $n_j = 0$, j = 1, 2, 3, 4, 5, in which case the corresponding grid-horizontal y = j crosses no tile.

Alternative Approach. Suppose, in the above setting, that every grid-line, whether vertical or horizontal, crosses at least one tile. Then the five m_i and the five n_j are all positive even integers, i.e., they are all at least 2. Consequently, the ten add up to at least 20 > 18 which is a contradiction. This establishes the first part.

The answer to the second part is in the affirmative. To prove this, we exhibit a domino tiling of the square $[0,6] \times [0,6]$ with a single separating line, i.e., one crossing no tile. Clearly, grid-lines alone are to be considered.

Begin by tiling the rectangle $[0,3] \times [0,6]$ by four horizontal dominoes, namely,

$$[0,2] \times [0,1], \quad [0,2] \times [3,4], \quad [1,3] \times [4,5], \quad [1,3] \times [5,6],$$

and five vertical dominoes, namely,

$$[2,3] \times [0,2], \quad [0,1] \times [1,3], \quad [1,2] \times [1,3], \quad [2,3] \times [2,4], \quad [0,1] \times [4,6].$$

Notice that the grid-horizontal y = 4 is the single separating line of this tiling.

Next, tile the rectangle $[3,6] \times [0,6]$ by a copy of the reflection of the above tiling in the grid-horizontal y=3, to make the grid-horizontal y=2 its single separating line. Explicitly, the four horizontal tiles are

$$[4,6] \times [0,1], \quad [4,6] \times [1,2], \quad [3,5] \times [2,3], \quad [3,5] \times [5,6],$$

and the five vertical tiles are

$$[3,4] \times [0,2], \quad [5,6] \times [2,4], \quad [3,4] \times [3,5], \quad [4,5] \times [3,5], \quad [5,6] \times [4,6].$$

The grid-horizontal y=2 is clearly the single separating line of this tiling.

Finally, the two tilings fit together along the grid-vertical x=3 to form an overall tiling of the square $[0,6] \times [0,6]$ with a single separating line — the grid-vertical x=3, of course.

Remark. Consider tiling an $m \times n$ rectangle by dominoes. Clearly, for such a tiling to exist, it is necessary that mn be even — assume this from now on.

It is easily seen that for any domino tiling of a rectangle $2 \times n$, $3 \times n$ or $4 \times n$, there always exists a separating grid-line, i. e., one crossing no tile.

On the other hand, if $m \ge 5$, $n \ge 5$, and $(m,n) \ne (6,6)$, then an $m \times n$ rectangle can be tiled by dominoes so that no grid-line is separating. This can be done by first dealing with a 5×6 and a 6×8 rectangle, respectively, to extend a tiling of an $m \times n$ rectangle with no separating grid-lines to one of an (m+2,n) rectangle.

Problem 4, junior level & problem 2, senior level. Let ABCD be a convex quadrilateral and let P be a point inside such that $\angle APB + \angle CPD = \angle APD + \angle BPC$, $\angle PAD + \angle PCD = \angle APD + \angle BPC$.

 $\angle PAB + \angle PCB$ and $\angle PDC + \angle PBC = \angle PDA + \angle PBA$. Prove that the quadrilateral ABCD is circumscriptible.

Flavian Georgescu

Solution. As usual, let A, B, C, D be the measures of the angles of the quadrilateral.

Notice that $\angle PDC + \angle PBC = \angle PDA + \angle PBA$ implies $\angle PDA + \angle PBA = (B+D)/2$. In the same manner, $\angle PAB + \angle PCB = (A+C)/2$. Add the last equalities to obtain $180^\circ = (A+B+C+D)/2 = (\angle PBA+\angle PAB) + \angle PDA + \angle PCB = (180^\circ - \angle APB) + \angle PDA + \angle PCB$, and notice that $\angle PDA + \angle PCB = \angle APB$ shows that circles APD and BPC are tangent at P.

Let (O_1, R_1) , (O_2, R_2) , (O_3, R_3) , (O_4, R_4) be the circles PAB, PBC, PCD and PDA respectively. Recall that points P, O_1, O_3 are collinear, and similarly, points P, O_2, O_4 are collinear. Further, $\angle O_2O_1O_4 + \angle O_2O_3O_4 = 180^\circ - \angle APB + 180^\circ - \angle CPD = 180^\circ$, so $O_1O_2O_3O_4$ is a cyclic quadrilateral; let R be its circumradius.

By Sine Law,

$$2R = \frac{O_1O_3}{\sin O_2} = \frac{O_2O_4}{\sin O_1} \Longrightarrow \frac{R_1 + R_3}{\sin \angle BPC} = \frac{R_2 + R_4}{\sin \angle APB},$$

then

$$\frac{AB}{\sin \angle APB} + \frac{CD}{\sin \angle CPD} = 2(R_1 + R_3) \Longrightarrow AB + CD = 2(R_1 + R_3) \sin \angle APB.$$

Similarly, $BC + DA = 2(R_2 + R_4) \sin \angle BPC$. All the above lead to AB + CD = BC + DA, hence the claim.