Cyprus Mathematical Society

A^{\prime} Selection Test for under $151 / 2$ years old

«Evк $\lambda \varepsilon i \delta \eta$ S" $^{\prime}$

Date: 29/01/2022
Time: 10:00-14:30

Instructions

1. Solve all problems, justifying fully your answers.
2. Write using blue or black ink. (Figures can be drawn using a pencil)
3. Correction fluid (Tipp-ex) is not permitted.
4. Calculators are not permitted.

Problem 1. Find all integer values of x for which the value of the expression

$$
x^{2}+6 x+33
$$

is a perfect square.
(A natural number ν is called a perfect square if there is a natural numbber α such that $\nu=$ α^{2}).

Problem 2. Let $A B \Gamma \Delta$ be a square. Let E, Z be points on the sides $A B, \Gamma \Delta$ of the square respectively, such that $\Delta E \| B Z$. Assume that the triangles $\triangle E A \Delta, \triangle Z \Gamma B$ and the parallelogram $B E \Delta Z$ have the same area.

If the distance between the parallel lines ΔE and $B Z$ is equal to 1 , determine the area of the square.

Problem 3. If x, y are real numbers with $x+y \geqslant 0$, determine the minimum value of the expression

$$
K=x^{5}+y^{5}-x^{4} y-x y^{4}+x^{2}+4 x+7
$$

For which values of x, y does K take its minimum value?

Problem 4. Consider the digits $1,2,3,4,5,6,7$.
(a) Determine the number of seven-digit numbers with distinct digits that can be constructed using the digits above.
(β) If we place all of these seven-digit numbers in increasing order, find the seven-digit number which appears in the $2022^{\text {th }}$ position.

