2021 STARS OF MATHEMATICS - SOLUTIONS (Junior Grade)

Problem 1. Let $a_{1}, a_{2}, a_{3}, a_{4}$ be positive real numbers satisfying

$$
a_{1} a_{2}+a_{1} a_{3}+a_{1} a_{4}+a_{2} a_{3}+a_{2} a_{4}+a_{3} a_{4}=1 .
$$

Show that

$$
\frac{a_{1} a_{2}}{1+a_{3} a_{4}}+\frac{a_{1} a_{3}}{1+a_{2} a_{4}}+\frac{a_{1} a_{4}}{1+a_{2} a_{3}}+\frac{a_{2} a_{3}}{1+a_{1} a_{4}}+\frac{a_{2} a_{4}}{1+a_{1} a_{3}}+\frac{a_{3} a_{4}}{1+a_{1} a_{2}} \geq \frac{6}{7} .
$$

Solution. Write the generic summand in the form $a_{i}^{2} a_{j}^{2} /\left(a_{i} a_{j}+a_{1} a_{2} a_{3} a_{4}\right), 1 \leq i<j \leq 4$, then use the condition $\sum_{1 \leq i<j \leq 4} a_{i} a_{j}=1$ and the Cauchy-Schwarz inequality, to write

$$
\begin{aligned}
\sum_{1 \leq i<j \leq 4} \frac{a_{i}^{2} a_{j}^{2}}{a_{i} a_{j}+a_{1} a_{2} a_{3} a_{4}} & =\frac{\sum_{1 \leq i<j \leq 4}\left(a_{i} a_{j}+a_{1} a_{2} a_{3} a_{4}\right)}{1+6 a_{1} a_{2} a_{3} a_{4}} \cdot \sum_{1 \leq i<j \leq 4} \frac{a_{i}^{2} a_{j}^{2}}{a_{i} a_{j}+a_{1} a_{2} a_{3} a_{4}} \\
& \geq \frac{1}{1+6 a_{1} a_{2} a_{3} a_{4}} \cdot \sum_{1 \leq i<j \leq 4} a_{i} a_{j}=\frac{1}{1+6 a_{1} a_{2} a_{3} a_{4}}
\end{aligned}
$$

Next, $\left(a_{1} a_{2} a_{3} a_{4}\right)^{3}=a_{1} a_{2} \cdot a_{1} a_{3} \cdot a_{1} a_{4} \cdot a_{2} a_{3} \cdot a_{2} a_{4} \cdot a_{3} a_{4} \leq\left(\frac{1}{6} \sum_{1 \leq i<j \leq 4} a_{i} a_{j}\right)^{6}=\frac{1}{6^{6}}$, by the AM-GM inequality, so $a_{1} a_{2} a_{3} a_{4} \leq \frac{1}{6^{2}}$.

Consequently,

$$
\sum_{1 \leq i<j \leq 4} \frac{a_{i}^{2} a_{j}^{2}}{a_{i} a_{j}+a_{1} a_{2} a_{3} a_{4}} \geq \frac{1}{1+6 a_{1} a_{2} a_{3} a_{4}} \geq \frac{1}{1+6 \cdot \frac{1}{6^{2}}}=\frac{6}{7}
$$

Clearly, equality holds if and only if $a_{1}=a_{2}=a_{3}=a_{4}=\frac{1}{\sqrt{6}}$.

2021 STARS OF MATHEMATICS - SOLUTIONS (Junior Grade)

Problem 2. Let $A B C$ be a triangle, let I be its incentre and let D be the orthogonal projection of I on $B C$. The circle $A B C$ crosses the line $A I$ again at M, and the line $D M$ again at N. Prove that the lines $A N$ and $I N$ are perpendicular.

Solution. Alternatively, but equivalently, we show that N lies on the circle on diameter $A I$. This circle crosses the sides $A C$ and $A B$ at E and F, respectively.

Clearly, D, E and F are the contact points of the incircle of the triangle $A B C$ with the sides $B C, C A$ and $A B$, respectively, so $B D=B F$ and $C D=C E$.

On the other hand, $M N$ is the internal angle bisectrix of $\angle B N C$, so $N B / N C=D B / D C=$ $B F / C E$. (The last equality holds by the preceding paragraph.)

Next, read angles from the circle $A B C$ to write $\angle F B N=\angle A B N=\angle A C N=\angle E C N$, and conclude by the preceding that the triangles $B N F$ and $C N E$ are similar.

It then follows that $\angle B F N=\angle C E N$, so $\angle A F N=\angle A E N$, showing that N lies indeed on the circle $A E F$, as desired.

2021 STARS OF MATHEMATICS - SOLUTIONS (Junior Grade)

Problem 3. Determine all integers (strictly) greater than 1 whose positive divisors add up to a power of 3 .

Andrei Bâra

Solution. The integer 2 alone satisfies the condition in the statement. The verification offers no difficulty.

For every positive integer k, let $\sigma(k)$ denote the sum of all positive divisors of $k, 1$ and k inclusive. If k and ℓ are positive integers, and k is coprime to ℓ, then $\sigma(k \ell)=\sigma(k) \sigma(\ell)$.

Consider now an integer $n \geq 2$ such that $\sigma(n)=3^{N}$ for some positive integer N. Let p be a prime divisor of n and let p^{K} be the highest power of p dividing n; that is, p^{K} divides n, but p^{K+1} does not. Then $1+p+\cdots+p^{K}=\sigma\left(p^{K}\right)$ divides $\sigma(n)=3^{N}$, so $1+p+\cdots+p^{K}=3^{M}$ for some positive integer M; in particular, $p \neq 3$.

Let now q be a prime divisor of $K+1$. Then $p^{q}-1$ divides $p^{K+1}-1$, so $1+p+\cdots+p^{q-1}=3^{L}$ for some positive integer L. The latter forces $p^{q} \equiv 1(\bmod 3)$.

If $q=2$, then $p=3^{L}-1$ is even, so $p=2$ and $2^{K+1}-1=1+2+\cdots+2^{K}=3^{M}$. The latter forces K odd. Write $\left(2^{(K+1) / 2}-1\right)\left(2^{(K+1) / 2}+1\right)=3^{M}$ and notice that the two factors are relatively prime integers, to infer that $K=1$.

If q is odd, recall that $p^{q} \equiv 1(\bmod 3)$, so $p \equiv 1(\bmod 3)$. Then $q \equiv 1+p+\cdots+p^{q-1}$ $(\bmod 3)$, and $1+p+\cdots+p^{q-1}=3^{L}$ forces $q=3$, so $1+p+p^{2}=3^{L}$. Since $p \equiv 1(\bmod 3)$, it follows that $1+p+p^{2} \equiv 3(\bmod 9)$, so $L=1$ and we reach a contradiction.

Consequently, $n=2$ is the only integer (strictly) greater than 1 whose positive divisors add up to a power of 3 .

2021 STARS OF MATHEMATICS - SOLUTIONS (Junior Grade)

Problem 4. Let $a_{0}=1$, let $a_{1}=2$, and let $a_{2}=10$, to define $a_{k+2}=a_{k+1}^{3}+a_{k}^{2}+a_{k-1}$ for all positive integers k. Is it possible that some a_{k} be divisible by 2021^{2021} ?

Flavian Georgescu
Solution. The answer is in the affirmative. Given any integer $N \geq 2$, we show that some a_{k} is divisible by N.

To this end, let $b_{0}=0$, let $b_{1}=1$, and let $b_{k}=a_{k-2}$ for all $k \geq 2$, so $b_{k+2}=b_{k+1}^{3}+b_{k}^{2}+b_{k-1}$ for all positive integers k.

For convenience, if $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ are integers, write $(a, b, c) \equiv\left(a^{\prime}, b^{\prime}, c^{\prime}\right)(\bmod N)$ whenever $a \equiv a^{\prime}(\bmod N), b \equiv b^{\prime}(\bmod N)$ and $c \equiv c^{\prime}(\bmod N)$.

Consider now all triples $\left(b_{k}, b_{k+1}, b_{k+2}\right), k=0,1,2, \ldots$. Since there are only finitely many (positive) residues modulo N, it follows that $\left(b_{n}, b_{n+1}, b_{n+2}\right) \equiv\left(b_{m}, b_{m+1}, b_{m+2}\right)(\bmod N)$ for some indices $n>m$. Then $b_{n-1} \equiv b_{n+2}-b_{n+1}^{3}-b_{n}^{2} \equiv b_{m+2}-b_{m+1}^{3}-b_{m}^{2} \equiv b_{m-1}(\bmod N)$, so $\left(b_{n-1}, b_{n}, b_{n+1}\right) \equiv\left(b_{m-1}, b_{m}, b_{m+1}\right)(\bmod N)$, and so on and so forth, all the way down to $\left(b_{n-m}, b_{n-m+1}, b_{n-m+2}\right) \equiv\left(b_{0}, b_{1}, b_{2}\right) \equiv(0,1,1)(\bmod N)$. Consequently, b_{n-m} is divisible by N. Finally, since $N \geq 2, b_{0}=0$ and $b_{1}=1$, it follows that $n-m \geq 2$, so $a_{n-m-2}=b_{n-m}$ is indeed divisible by N. This ends the proof.

