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Problem 1. Let n (n ≥ 1) be an integer. Consider the equation

2 ·
⌊

1

2x

⌋
− n+ 1 = (n+ 1)(1− nx),

where x is the unknown real variable.

(a) Solve the equation for n = 8.

(b) Prove that there exists an integer n for which the equation has at least 2021 solutions.

(For any real number y by byc we denote the largest integer m such that m ≤ y.)

Solution. Let k =
[

1
2x

]
, k ∈ Z.

(a) For n = 8, the equation becomes

k =

[
1

2x

]
= 8− 36x⇒ x 6= 0 and x =

8− k
36

.

Since x 6= 0, we have k 6= 8, and the last relation implies k =
[

1
2x

]
=
[

18
8−k

]
. Checking

signs, we see that 0 < k < 8. By direct verification, we find the solutions k = 3 (hence
x = 5

36
and k = 4 (hence x = 1

9
).

(b) From the given equation we have x 6= 0 and x = 2(n−k)
n(n+1)

. Therefore, k 6= n and

k =
[

1
2x

]
=
[
n(n+1)
4(n−k)

]
. Again, checking signs we see that 0 ≤ k < n. The last equation

implies

k ≤ n(n+ 1)

4(n− k)
< k + 1⇒

{
(2k − n)2 + n ≥ 0

(2k + 1− n)2 < n+ 1
⇒

⇒ n− 1−
√
n+ 1

2
< k <

n− 1 +
√
n+ 1

2
(2)

Conversely, if k ∈ Z satisfies (2) and 0 < k < n, then x = 2(n−k)
n(n+1

is a solution to the given

equation. It remains to note that choosing n such that
√
n+ 1 > 2021 ensures that there

exist at least 2021 integer values of k which satisfy (2).
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Problem 2. For any set A = {x1, x2, x3, x4, x5} of five distinct positive integers denote
by SA the sum of its elements, and denote by TA the number of triples (i, j, k) with
1 6 i < j < k 6 5 for which xi + xj + xk divides SA.

Find the largest possible value of TA.

Solution. We will prove that the maximum value that TA can attain is 4. Let A =
{x1, x2, x3, x4, x5} be a set of five positive integers such that x1 < x2 < x3 < x4 < x5.
Call a triple (i, j, k) with 1 6 i < j < k 6 5 good if xi + xj + xk divides SA. None of the
triples (3, 4, 5), (2, 4, 5), (1, 4, 5), (2, 3, 5), (1, 3, 5) is good, since, for example

x5 + x3 + x1 | SA ⇒ x5 + x3 + x1 | x2 + x4

which is impossible since x5 > x4 and x3 > x2. Analogously we can show that any triple
of form (x, y, 5) where y > 2 isn’t good.

By above, the number of good triples can be at most 5 and only triples (1,2,5), (2,3,4),
(1,3,4), (1,2,4), (1,2,3) can be good. But if triples (1,2,5) and (2,3,4) are simultaneously
good we have that:

x1 + x2 + x5 | x3 + x4 ⇒ x5 < x3 + x4 (1)

and

x2 + x3 + x4 | x1 + x5 ⇒ x2 + x3 + x4 6 x1 + x5
(1)
< x1 + x3 + x4 < x2 + x3 + x4,

which is impossible. Therefore, TA 6 4.
Alternatively, one can prove the statement above by adding up the two inequalities

x1 + x2 + x4 < x3 + x4 and x2 + x3 + x4 < x1 + x5 that are derived from the divisibilities.
To show that TA = 4 is possible, consider the numbers 1, 2, 3, 4, 494. This works

because 6 | 498, 7 | 497, 8 | 496, and 9 | 495.�

Remark. The motivation for construction is to realize that if we choose x1, x2, x3, x4 we
can get all the conditions x5 must satisfy. Let S = x1 + x2 + x3 + x4. Now we have to
choose x5 such that

S − xi | xi + x5, i.e. x5 ≡ −xi mod (S − xi)∀i ∈ {1, 2, 3, 4}.

By the Chinese Remainder Theorem it is obvious that if S − x1, S − x2, S − x3, S − x4
are pairwise coprime, such x5 must exist. To make all these numbers pairwise coprime
it’s natural to take x1, x2, x3, x4 to be all odd and then solve mod 3 issues. Fortunately it
can be seen that 1, 5, 7, 11 easily works because 13, 17, 19, 23 are pairwise coprime.

However, even without the knowledge of this theorem it makes sense intuitively that
this system must have a solution for some x1, x2, x3, x4. By taking (x1, x2, x3, x4) =
(1, 2, 3, 4) we get pretty simple system which can be solved by hand rather easily.
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Problem 3. Let ABC be an acute scalene triangle with circumcenter O. Let D be the
foot of the altitude from A to the side BC. The lines BC and AO intersect at E. Let
s be the line through E perpendicular to AO. The line s intersects AB and AC at K
and L, respectively. Denote by ω the circumcircle of triangle AKL. Line AD intersects
ω again at X.

Prove that ω and the circumcircles of triangles ABC and DEX have a common point.

Solution.

ω

s

9
0
−
γ

A

O

B C
D

F

E

X

K

L

Let us denote angles of triangle ABC with α, β, γ in a standard way. By basic angle-
chasing we have

∠BAD = 90◦ − β = ∠OAC and ∠CAD = ∠BAO = 90◦ − γ.

Using the fact that lines AE and AX are isogonal with respect to ∠KAL we can
conclude that X is an A-antipode on ω. (This fact can be purely angle-chased: we have

∠KAX + ∠AXK = ∠KAX + ∠ALK = 90◦ − β + β = 90◦

which implies ∠AKX = 90◦). Now let F be the projection of X on the line AE. Using
that AX is a diameter of ω and ∠EDX = 90◦ it’s clear that F is the intersection point
of ω and the circumcircle of triangle DEX. Now it suffices to show that ABFC is
cyclic. We have ∠KLF = ∠KAF = 90◦ − γ and from ∠FEL = 90◦ we have that
∠EFL = γ = ∠ECL so quadrilateral EFCL is cyclic. Next, we have

∠AFC = ∠EFC = 180◦ − ∠ELC = ∠ELA = β

(where last equality holds because of ∠AEL = 90◦ and ∠EAL = 90◦ − β).�
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Solution 2. We have ∠BAD = 90◦ − β = ∠OAC and that AX is the diameter of ω.
Also we note that

∠ALK = β, ∠KLC = 180◦ − β = ∠KBC

so BKCL is cyclic. Let AO intersect circumcircle of ABC again at A′. We will show
that A′ is the desired concurrence point. Obviously AA′ is the diameter of circumcircle of
triangle ABC so ∠A′CA = 90◦ which implies that A′CLE is cyclic. From power of point
E we have that EK · EL = EB · EC = EA · EA′ so we can conclude that A′ ∈ ω. Now
using the fact that AX is a diameter of ω implies ∠AXA′ = 90◦ we have that DXA′E is
cyclic because of ∠EDX = 90◦ which finishes the proof.�
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Problem 4. Let M be a subset of the set of 2021 integers {1, 2, 3, . . . , 2021} such that
for any three elements (not necessarily distinct) a, b, c of M we have |a+ b− c| > 10.

Determine the largest possible number of elements of M .

Solution. The set M = {1016, 1017, . . . , 2021} has 1006 elements and satisfies the re-
quired property, since a, b, c ∈ M implies that a + b− c > 1016 + 1016− 2021 = 11. We
will show that this is optimal.

Suppose M satisfies the condition in the problem. Let k be the minimal element of
M . Then k = |k + k − k| > 10 ⇒ k > 11. Note also that for every m, the integers
m,m+ k − 10 cannot both belong to M , since k +m− (m+ k − 10) = 10.

Claim 1: M contains at most k − 10 out of any 2k − 20 consecutive integers.
Proof: We can partition the set {m,m+ 1, . . . ,m+ 2k− 21} into k− 10 pairs as follows:

{m,m+ k − 10}, {m+ 1,m+ k − 9}, . . . , {m+ k − 11,m+ 2k − 21},

It remains to note that M can contain at most one element of each pair.

Claim 2: M contains at most [(t+ k − 10)/2] out of any t consecutive integers.
Proof: Write t = q(2k − 20) + r with r ∈ {0, 1, 2 . . . , 2k − 21}. From the set of the first
q(2k − 20) integers, by Claim 1 at most q(k − 10) can belong to M . Also by claim 1, it
follows that from the last r integers, at most min{r, k − 10} can belong to M .

Thus,

� If r 6 k − 10, then at most

q(k − 10) + r =
t+ r

2
6
t+ k − 10

2
integers belong to M .

� If r > k − 10, then at most

q(k − 10) + k − 10 =
t− r + 2(k − 10)

2
6
t+ k − 10

2
integers belong to M.

By Claim 2, the number of elements of M amongst k + 1, k + 2, . . . , 2021 is at most[
(2021− k) + (k − 10)

2

]
= 1005.

Since amongst {1, 2, . . . , k} only k belongs to M , we conclude that M has at most 1006
elements as claimed. �


