
2021 Stars of Mahtematics, Junior Grade — Solution to Problem 1

Problem 1. For every integer n ≥ 3, let sn be the sum of all primes (strictly) less than n.
Show that there are infinitely many integers n ≥ 3 such that sn is coprime to n.

Russian Competition

Solution. It is clearly sufficient to show that at least one of the entries of every pair of
consecutive odd primes satisfies the condition in the statement. (Inidentally, notice that
s5 = 2 + 3 = 5, so 5 and s5 are not relatively prime.)

For a prime p, the condition is that sp be not divisible by p. Let (p, q) be a pair of
consecutive odd primes; say, p < q, so sq = sp + p. Clearly, it is sufficient to show that, if
sp = kp for some positive integer k, then sq = (k+ 1)p is not divisible by q. Alternatively, but
equivalently, that k + 1 is not divisible by q.

To prove the latter, notice that kp = sp < 1+2+ · · ·+(p−1) = 1
2p(p−1), so k < 1

2(p−1).
Consequently, k + 1 < 1

2(p + 1) < p < q, showing that k + 1 is indeed not divisible by q.



2021 Stars of Mahtematics, Junior Grade — Solution to Problem 2

Problem 2. Fix integers m ≥ 3 and n ≥ 3. Each cell of an array with m rows and n columns
is coloured one of two colours such that:

(1) Both colours occur on every column; and
(2) On every two rows the cells on the same column share colour on exactly k columns.

Show that, if m is odd, then

n(m− 1)

2m
≤ k ≤ n(m− 2)

m
.

The Problem Selection Committee

Convention. The pairs considered in both solutions in the sequel are all unordered. For
convenience, two cells on the same column form a vertical pair. A bicolour vertical pair is one
whose cells bear distinct colours; otherwise the vertical pair is monochromatic.

Solution 1. Count the total number of bicolour vertical pairs. There are 1
2m(m− 1) pairs of

rows, each of which contains exactly n−k bicolour vertical pairs, so the array contains exactly
1
2m(m− 1)(n− k) such pairs.

We will show that the total number of monochromatic vertical pairs in the array is at least
n(m−1) and, if m is odd, at most 1

4n(m2−1); if m is even, it is at most 1
4nm

2. The conclusion
then follows at once, by the count in the preceding paragraph — the obvious manipulations
and calculations are omitted.

To establish the bounds, it is sufficient to show that the number of bicolour pairs along
any column is at least m − 1 and, if m is odd, at most 1

4(m2 − 1); if m is even, it is at most
1
4m

2 > 1
4(m2 − 1).

Fix a column and let p be the number of cells of one colour on that column. Clearly, there
are p(m− p) bicolour pairs along the column.

Since (p− 1)(m− p− 1) ≥ 0, it follows that p(m− p) ≥ m− 1, showing that the number
of bicolour pairs along the column is at least m− 1.

On the other hand, p(m − p) ≤ 1
4m

2, so p(m − p) ≤
⌊
1
4m

2
⌋
. If m is odd, then

⌊
1
4m

2
⌋

=
1
4(m2 − 1), so the number of bicolour pairs along the column is at most 1

4(m2 − 1).
This completes the argument and concludes the proof.

Solution 2. Count the total number of monochromatic vertical pairs. There are 1
2m(m− 1)

pairs of rows, each of which contains exactly k monochromatic vertical pairs, so the array
contains exactly 1

2km(m− 1) such pairs.

We will show that the total number of monochromatic vertical pairs in the array is at most
1
2n(m−1)(m−2) and, if m is odd, at least 1

4n(m−1)2; if m is even, it is at least 1
4nm(m−2).

The conclusion then follows at once, by the count in the preceding paragraph.

To establish the bounds, it is sufficient to show that the number of monochromatic pairs
along any column is at most 1

2(m − 1)(m − 2) and, if m is odd, at least 1
4(m − 1)2; if m is

even, it is at least 1
4m(m− 2) < 1

4(m− 1)2.

Fix a column and let p be the number of cells of one colour along that column, and let
q = m−p be the number of cells of the other colour. The cells along the column form 1

2p(p−1)
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pairs of one colour, and 1
2q(q−1) pairs of the other colour. Hence there are 1

2p(p−1)+ 1
2q(q−1)

monochromatic pairs along the column. It is easily seen that this number falls between the
two bounds mentioned in the preceding paragraph.

To check that 1
2p(p − 1) + 1

2q(q − 1) ≤ 1
2(m − 1)(m − 2), write q = m − p and carry out

calculations to obtain the equivalent inequality (p− 1)(p−m+ 1) ≤ 0. This holds, since p lies
precisely in the range 1 through m− 1.

Similarly, checking that 1
2p(p − 1) + 1

2q(q − 1) ≥ 1
4(m − 1)2 if m is odd, amounts to

(2p−m)2 ≥ 1, which is clearly the case by an obvious parity argument.
The weaker inequality, 1

2p(p− 1) + 1
2q(q− 1) = 1

2(p2 + q2)− 1
2(p+ q) = 1

2(p2 + q2)− 1
2m ≥

1
4(p + q)2 − 1

2m = 1
4m(m− 2), holds whatever the parity of m ; in particular, if m is even.

This completes the argument and concludes the proof.

Remark. The bounds in the statement can both be achieved. For instance, let m = 5,
n = 10, and write b for ‘blue’ and r for ‘red’. The two arrays below achieve the lower bound
k = 4 (left) and the upper bound k = 6 (right), respectively:

b b b b r r r r r r
b r r r b b b r r r
r b r r b r r b b r
r r b r r b r b r b
r r r b r r b r b b

b r r r r r b b b b
r b r r r b r b b b
r r b r r b b r b b
r r r b r b b b r b
r r r r b b b b b r
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2021 Stars of Mahtematics, Junior Grade — Solution to Problem 3

Problem 3. Let ABC be a triangle and let M be the midpoint of the side BC. The reflexion
of the line AM in the internal bisectrix of the angle ∠BAC crosses the circumcircle of the
triangle ABC again at D. Let Q and R be the feet of the perpendiculars from D on the
lines AC and AB, respectively, and let X be a point on the line QR, different from both Q
and R. The line through X and perpendicular to DX crosses the lines AC and AB at V
and W , respectively. Show that the midpoint of the segment VW lies on the line BC.

Adapted from The Amer. Math. Monthly

Solution. (by The Problem Selection Committee) Let P be the foot of the perpendicular
from D on the line BC, and recall that P , Q and R are collinear — the line ` through these
points is the Simson line of D with respect to the triangle ABC. If X = P , the conclusion is
clear, since V = C and W = B.

For a generic X on `, that is, X 6= P, Q, R, the line VW crosses the line BC at some
point U . We will show that U is the midpoint of the segment VW .

Apply Menelaus’ theorem to triangle AVW and transversal UBC to write

UV

UW
· BW

BA
· CA

CV
= 1.

It is therefore sufficient to show that CV/BW = CA/BA. The latter is a consequence of
the fact that (CDV,BDW ), (ACD,AMB) and (ABD,AMC) are pairs of similar triangles.
Indeed, assuming these similarities and recalling that MB = MC, the desired equality follows
from the corresponding similarity ratios below:

CV

BW
=

CD

BD
,

CD

MB
=

AC

AM
,

BD

MC
=

AB

AM
.

We now turn to prove the three similarities above. The last two offer no difficulty — they
both follow by isogonality at A and standard angle chase in the circle through A, B, C, D. For
instance, ∠(AD,AC) = ∠(AB,AM), by isogonality at A, and ∠(DC,DA) = ∠(BC,BA) =
∠(BM,BA), on account of A, B, C, D being concyclic. The triangles ACD and AMB are
therefore similar. The pair of triangles (ABD,AMC) is dealt with similarly.

To deal with the pair (CDV,BDW ), proceed by angle chase in the different cyclic quad-
rangles that form in the configuration. Thus, ∠(CD,CV ) = ∠(CD,CA) = ∠(BA,BD) =
∠(BW,BD), on account of A, B, C, D being concyclic; and ∠(V C, V D) = ∠(V Q, V D) =
∠(XQ,XD) = ∠(XR,XD) = ∠(WR,WD) = ∠(WB,WD), where the third equality holds
on account of D, Q, V , X being concyclic (Q and X both lie on the circle on diameter DV ),
and the fifth — on account of D, R, W , X being concyclic (X and R both lie on the circle
on diameter DW ). The triangles CDV and BDW are therefore similar. This completes the
argument and concludes the proof.

Remark. The particular case where X is the orthogonal projection of D on ` shows that P
is the midpoint of the segment QR.
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2021 Stars of Mahtematics, Junior Grade — Solution to Problem 4

Problem 4. Let k be a positive integer, and let a, b and c be positive real numbers. Show
that

a
(
1− ak

)
+ b

(
1− (a + b)k

)
+ c

(
1− (a + b + c)k

)
<

k

k + 1
.

∗ ∗ ∗

Solution. Let S denote the sum in the left-hand member of the required inequality, and let
x = a, y = a + b and z = a + b + c. Then b = y − x, c = z − y, so 0 < x < y < z, and
S = x

(
1− xk

)
+ (y − x)

(
1− yk

)
+ (z − y)

(
1− zk

)
.

The special case of the AM-GM inequality, 1
k+1

(
uk+1 + kvk+1

)
≥ uvk, u ≥ 0, v ≥ 0, is

used in the sequel; the inequality is strict unless u = v.
The particular case, 1

k+1u
k+1 + k

k+1 ≥ u, u ≥ 0, is used in the last relation below.

The required inequality now follows from the chain of relations below:

S = x
(
1− xk

)
+ (y − x)

(
1− yk

)
+ (z − y)

(
1− zk

)
= x + (y − x) + (z − y)− xk+1 − (y − x)yk − (z − y)zk

= z − xk+1 + xyk − yk+1 + yzk − zk+1

< z − xk+1 + 1
k+1

(
xk+1 + kyk+1

)
− yk+1 + 1

k+1

(
yk+1 + kzk+1

)
− zk+1

= z +
(
−xk+1 + 1

k+1x
k+1

)
+
(

k
k+1y

k+1 − yk+1 + 1
k+1y

k+1
)

+
(

k
k+1z

k+1 − zk+1
)

= z − k
k+1x

k+1 − 1
k+1z

k+1 = k
k+1 −

k
k+1x

k+1 −
(

1
k+1z

k+1 + k
k+1 − z

)
≤ k

k+1 −
k

k+1x
k+1

< k
k+1 .

This ends the proof.
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