

Language: English

Friday, September 11, 2020

Problem 1. Find all triples (a, b, c) of real numbers that satisfy the system of equations:

$$
a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \text { and } a^{2}+b^{2}+c^{2}=\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} .
$$

Problem 2. Let $\triangle A B C$ be a right-angled triangle with $\angle B A C=90^{\circ}$ and let E be the foot of the perpendicular from A on $B C$. Let $Z \neq A$ be a point on the line $A B$ with $A B=B Z$. Let (c) be the circumcircle of the triangle $\triangle A E Z$. Let D be the second point of intersection of (c) with $Z C$ and let F be the antidiametric point of D with respect to (c). Let P be the point of intersection of the lines $F E$ and $C Z$. If the tangent to (c) at Z meets $P A$ at T, prove that the points T, E, B, Z are concyclic.

Problem 3. Alice and Bob play the following game: Alice picks a set $A=\{1,2, \ldots, n\}$ for some natural number $n \geqslant 2$. Then starting with Bob, they alternatively choose one number from the set A, according to the following conditions: initially Bob chooses any number he wants, afterwards the number chosen at each step should be distinct from all the already chosen numbers and should differ by 1 from an already chosen number. The game ends when all numbers from the set A are chosen. Alice wins if the sum of all the numbers that she has chosen is composite. Otherwise Bob wins. Decide which player has a winning strategy.

Problem 4. Find all prime numbers p and q such that

$$
1+\frac{p^{q}-q^{p}}{p+q}
$$

is a prime number.

