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Algebra

Problem 1. [Al]
Prove the inequality

(a3 +at+aP+a®+a+1)(B°+b1+03+02+b+1) (P +c+ B+ P +e+1) > 8(a?+a+1) (b2 +b+1)(P+c+1)

Jora,b,c € R, such that abc = 1.

Solution

. By factorizing we get (a® + a* +a®* +a? +a+1) = (a®*+1)(a® +a+1). We apply
‘ same thing to the other terms and simply to get (a® + 1)(8® + 1)(c® + 1) > 8. By
AM > GM we have

a®+1>2va?
B+1>2V03
S+1>2/3

(@®+1)(6* + 1) (2 +1) > 8Va33A3 =8
Equality holds ifand only ifa = b =c = 1.

Problem 2. [a2) M €D
Let z,y and z are positive real numbers. Prove that:

x4+ 2y y+2z z+2x <3
z+2x+3y z+2y+32 y+22+4+3x " 2
Solution
_ =42y _ _yt2z _ +2
Leta = o5 50 = mi5y49; and e = yfzzfaz-

1 __ 242243y 1 _ 2+2y+32 1 __ y+2243z
We have l1-a = z+y+z ' 1-b~ z+y+z and 1-¢ = z+y+z

It is easy to see that

1 1 1 6(z+y+2)
= -'-'6
1—a+1—b+l—c T+y+z

.. .} l}
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If we use the inequality between arithmetic and harmonic mean for the positive
numbers 1 —a,1 —band 1 — ¢ we get

l-a+1-b+1-c¢ 3
3 Z 1 | 1 2
=tigtis

From the last we geta + b+ ¢ < %

Problem 3. [43] MNE
Let a and b be positive real numbers. Prove that

2
,/£+GT“5‘3+\/,;'550+,,
Solution

First Solution. After dividing both sides by b it becomes

1 2
(e 4t l) rlt sl t,
3\\5) T3 5= b

which by substituting § = = gives

2
\/m—+3w—H+\/55a:+1.

Taking squares the above inequality transforms into

2 2
THetl o fHEREY 2 00y
3 3
or equivalently,
z(x2+z+1) _ 2z*+z+1)

which dividing by 2v'z? + z + 1 becomes v/3z < V22 + z + 1.
Taking squares the above inequality transforms into 2 — 2z + 1 > 0, which
can be written as (z — 1)2 > 0. Hence, the required inequality is proved, and
equality holds if and only ifa = b.

Second Solution. Applying the well known inequality ¥ < ”2—*2’3/3,
z >0,y >0, witha = \/ 22+ gnd y = /ab, we find that

2 2 2 2 2
/a +¢:13b+b +Vab< V3 a +c;b+b +ab=\/2a +2?I:2+8ab.

We will show that the right hand side of the above inequality is < a + b, that is,

2a2 + 2b% + 8ab
\/a+3+a§a+b.
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Taking squares, after easy calculations, the above inequality reduced to
a? — 2ab + b* > 0, which can be written as (a — b)? > 0. Hence, the required
inequality is proved, and equality holds if and only ifa = b.

Third Solution Let 1/ “+%+¥* — g and v/ab = y, then a® + ab+ b* = 32? and
ab = y*. We have z + y < a + b. Squaring both sides we have 2z(z — y) > 0
witch is true becausex > y > 0

Problem 4. [A4] BUL

Let z,y, be positive numbers such that =3 + y* < 2% 4+ y?. Find the greatest
possible value of the product zy.

Solution

Putz+y=a >0, zy = b > 0. The given inequality writes as a> — 3ab < a? — 2b
that is equivalent to a® — a* < b(3a — 2). Note that (z — y)*> > 0 implies b < %.
Ifa < % it follows that b < -}5. Now let a > % Froma® — a® < b(3a — 2) we get
“33“’_“22 <b,buth< %—f- leaoi.sto";a'_“22 < "7:— =a<2 Byb< ‘2—2 wegeth < 1.

Forx =y =1 we have b = 1, so this is the greatest value of b.

Problem 5. [A5] é ?‘ﬁ
Determine positive integers a, b such that

a2b® + 208 = 4 - (ja, b] + (a, b))

where [a, ] is the least common multiple and (a, b) is the greater common divisor
of the positive integers a, b.

Solution

We put [a,b] = z and (a,b) = y. From the well known identity for positive
integers

ab = [a,b] - (a,b)
the given equation is equivalent to
22 +208 =4(z +y) & {2(@+y) + 2y} - {2(z +y) — zy} = 208

Since the two factors A = 2 (z +y) + zy and B = 2(z + y) — xy are positive
integers having sum A+ B = 4 (z + y) a multiple of 4 and difference A—B = 2zy
an even number, from the last equation we conclude that only the pair (A,B) =



(52,4) is acceptable. Therefore we have
A=2(z+y)+zy=>52 - r+y=14
B=2(z+y)—-zy=4 zy=24

Since we have r > y we conclude that (z,y) = (12, 2), that is

[@,b] =12 and (a,b) =2

Thus we have that a = 2a;, b = 2b;, where a,, b, are positive integers with
(a1,b1) = 1 and then we get

ab=zy=4a1b) =12-2=24 = a;b; = 6.
Since (a;,b;) = 1 we conclude that
ag=3, hh=2o0ra; =2, ) =3.
Hence we have the solutionsa =6, b=4 ora=4, b=6.

Problem 6. [A6] 1P
Letz; > 1, Vi€ {1,2,3,...,2011}. Prove the inequality

(z1)? + (z2)® | (z3)® 4ot (z2010)" - (zz0m)” > 8044

To—1 x3—1 zx4-1 Too11 — 1 ;-1
When does equality hold?
Solution

Realize that (z; — 2)? > 0 & ()% > 4(z; — 1). So we get,

(1)? | (z2)? | (x3)? (z2010)% | (z2011)?
+ e § + >
.’L'2—1 2,'3—1 .'114—1 I20]1—1 2,'1—1

-1 -1 -1 -1
4(11 Lr2=l  zown-1 2an )

Ig—l I3—1 :Egml—l :L‘l—l
" denoteA
By AM > GM we have
11—1 :Eg—l .’l:zom——l :L‘gml—l
zo—1 z3-—1 Too11 — 1 rn—1 —

2011 - m,\,/:cl—l_a:zul I2010—1_$2011—1
To—1 z3—-1 "Zoon1—-1 z7-1

so A > 2011
Equality holds when | = T = --- = Togy; and (z; —2)? =0
So equality holds whenz; = 2,Vi € {1,2,3,...,2011}

& (z,y) = (12,2) or (z,y) = (2,12)
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Problem 7. [A7] TA J

Leta,b,c € Ry and abc = 1. Prove the inequality
22 +1  22+} 28 +%
b+l+4+1 c+i+41 a+i+17

Solution
By AM-GM inequality we have 2a®> + 1 = a® + o> + 1 > 3va3 = 3a applying
same process to the other numeraters we get
241 2 1 1 ?
2a+a+2b1+b 2c2+c2 ?.la N 31b + 31c 1
b+1+1 c+i+1 a+l+417b+1+1 c+3+1 a+i+l

From here we need to prove

a b c ?
1 + 1 + 1 21
b+ 3+1 e+ g+l  artad
Since%=bc, %sac, %=bcweget
a b c ?
+ + >
b+bc+1 c+ca+1l a+ab+1
denot:asA

In order to prove that A is bigger than 1. We try to show the following inequality

a b c

b+d 1 b 1 b+1

f)+bc+1+c+w+1+a+ab+L[a( +bc+1)+b(c+ca+1)+cla+ab+1)]
denot;asA

>(a+b+c)?

Here if we show that
(ab+bc+1)+blc+ca+1)+cla+ab+1))<(a+b+c)?

it implies that A is bigger than 1.
So we just need to prove

2

(ab+1+a+bc+1+b+ca+1+c)<(a+b+c)? = a’+b%+c*+2ab+2ac+2bc

or

7
3+a+b+c<a®+b*+c+ab+ac+ be

Here we can show that 3 < ab + ac+ bc by AM-GM inequality and we can easily
show that a + b+ ¢ < a® + b? + ¢®. This finishes the proof.
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Problem 8. [A8] M N€
Decipher the equality

(LARN - ACA) : (CYP + RUS) =CY" . RU®

where different symbols correspond to the different digits, and the equal symbols
correspond to the equal digits. It is also suposed that all these digits are different
Sfrom 0.

Solution

Denote t = LARN — ACA, y = CYP+ RUS and z = C¥* - RV . Itis
obvious that 1823 — 898 < r < 9287 — 121, 123 + 456 < y < 987 + 654, that is
925 < z < 9075 and 579 < y < 1641, whence it follows that g < £ < %2,
or 0,563... < 5 < 15,673.... Stnce% =z=CY".R" isan integer, it follows
that this ilso a number i and so, the previous inequality yields 1 < i < 15.
Hence, must be 1 < z < 15, that is 1 < C¥" . RU® < 15. Hence, both values
CY" and RV® are < 15. From this and the fact that 2** = 16 it follows that at
least one of the symbols in the expression C¥* and at least one of the symbols
in the expression RU° correspond to the digit 1. This is impossible because of
the assumption that all the symbols in the set {C,Y, P, R,U, S} correspond to
the different digits.

Problem 9. [A9] LOM
Letzy,za,..., Tn be real numbers satisfying

n—1
Z min(zkv l'k+1) = min(.’l:l, xn)-

k=1
Show that
n-1
Zxk >0
k=2
Solution

Since min (a,b) = $(a + b — |a — b|), we have
n—1

1
> 5@k = Tke1 = |2k = Tpal) =
k=1

(11:1+£L‘n—|.’1:1—wn|)¢>...

Ve

2o+ ...+ Tp1) +|T1 —Tp| = |T1 — T2 + ... + |T01 — Zp|-

As |z) — Zo| + - + |[Tno1-z,| 2 [T1 — T2 + - + Tno1 — Tn| = |21 — T4, we

obtain the desired conclusion.
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Geometry

Problem 1. [G1] 6RC

Let ABC be an isosceles triangle with AB = AC. On the extension of the side
C A we consider the point D such that AD < AC. The perpendicular bisector of
the line segment BD meets the internal and external bisector of the angle ZA at
the points E and Z, respectively. Prove that the points A, B, D, Z are cocyclic.
Solution

First Solution In the triangle the line bisects the angle and the line is the perpen-
dicular bisector of the side . Hence belongs to the circumcircle of the triangle .
Therefore the points are cocyclic.

In the triangle BCD, AE and ZE are perpendicular bisectors of the sides BC
and BD respectively. Hence, E is the circumcentre of the triangle BCD and
therefore El =C=B8.

Since BD 1 ZE, we conclude that:

D1=90°—E,=90-B=A4;

Hence the quadrilateral AEBD is cyclic, that is the points A, B, D, E are cocyclic.

Therefore, since A, B, D, Z are also cocyclic we conclude that AEZD is cyclic.
Second solution

We consider the point T symmetric of B with respect to the axis AZ. Since AE

9
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and BT are both perpendiculars to AZ, they are parallel and so:
LEAC=/BTA (1)

Also, because of the symmetry of B, T with respect to the axis AZ, we have
ZBTA=/TBA 2

Since ZB = ZT = ZD, the point Z is the center of the circle passing through
the points B, D,T. Therefore we have

ABTAz-;-ABZD-—'éEZD (3)

From relations (1), (2) and (3) we conclude that ZEAC = /EZD, which gives
that the quadrilateral is inscribable, that is the points the points A, D, Z, E are
cocyclic.

Problem 2. [G2] gg@‘

Let AD, BF and CE be the altitudes of triangle AABC'. A line passes through
D and parallel to AB intersects the line EF' at the point G. If H is the ortho-
center of AABC find the angle ZCGH.

Solution

Quadrilateral BCFE is cyclic because /ZBEC = /BFC = 90° and thus
LAEF = LACB = 5. Then £LDGF = ZAEF = ~ (angles with parallel
rays) and points D, C, F and G are concyclic. Also ZAHF = ZDCF =
(angles with orthogonal rays) and points D, C, F and H are concyclic. Thus
£ZCGH = ZHDC = 90°.

L
é
L
|
E
_
_
q
.
_
L
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Problem 3. (G3] MME

Let ABC be a triangle in which BL is the angle bisector of ZABC, AH is the
altitude of ABC and M is the midpoint of the side AB (L € AC, H € BC and
M € AB). 1t is known that the midpoints of the segments BL and M H coincide.
Determine the internal angles of ABC.

Solution

Let N be the intersection of the segments BL and M H. Because by the assump-
tion N is a midpoint of both segments BL and M H, it follows that BM LH is
a parallelogram. This implies that M L||BC and LH||AB, and hence, the angle
bisector BL and the altitude AH are also the medians of ABC. This shows that
ABC is an equilateral triangle with all internal angles measuring 60°.

Problem 4. [G4] Bu L

Point D lies on the side BC of triangle ABC. The circumcenters of triangles
ADC and BAD are O, and O, respectively, and 0102||AB. The orthocenter
of triangle ADC is H and AH = 0102. Find the angles of triangle ABC, if
2O £B=3:2

Solution

As 07 and O, lie on the perpendicular bisector of AD, we have 0102 L AD.
So /DAB = 90° and is obtuse. Let F be the midpoint of CD and CE be a
diameter of the circumcircle of triangle ADC. Then ED1CD and EA1CA,
so ED|AH and EA|DH and hence EAHD is a parallelogram. Therefore
010, = AH = ED = 20,F and so L010:F = ZABC = 30°. Now as
£C:/B=3:2, weget /C =45, /A =105,
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Problem 5. [G5] NMOL

Inside the square ABCD the equilateral triangle ABE is constructed. Let M
be an interior point of the triangle ABE, such that MB = /2, MC = /6,
MD = +/5 and ME = /3. Find the area of the square ABCD.

Solution

First Solution. For every point T, such that the points T, A,C and T, B, D are
noncoliniar, we have the following assertion: TA% + TC? = TB? + TD?. Let
ACNBD = {0} and consider the triangles ACT and BDT. In each of them the
segment T'O is a median. By applying twice the median formulae we obtain

4-TO? = 2(TA?+TC?) - AC?, 4.TO?=2(TB?+TD? - BD?.

Because AC = BD, from the last equalities we have TA% +TC? = TB? + TD2.

LetT = M. So, M A% + MC? = M B? + M D?. From the given conditions we
obtain the equality M A = 1.

Let N be a point, situated outside of the square ABCD, suchthatm(£N AB) =
m(LMAE) and m({NBA) = m({MFEA). Because AB = AE, the triangles
AME and AN B are congruent and AM = AN =1, ME = BN = /3. (see
fig.1).

From the equalities m(ZMAE)+m(ZMAB) = 60° = m(ZNAB)+m(£LMAB) =
m(£NAM), it follows that the triangle AM N is equilateral and MN = 1. The
triangle BM N is rightangled, because BM* + M N? = BN2. So, m(£{BM A) =
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m(£LBMN)+m(£LAMN) = 150°. Let P be orthogonal projection of the point A
on the straightline BM (see fig.2)

The triangle PAM is rightangled withm(ZAPM) = 90°, m(£ZAMP) = 30°
and MA =1.So, AP = % and PM = )g_i By applying Pythagoras theorem for
the rightangled triangle AP B we obtain

2 2
AB? = AP* + BP?* = (%) +(%—§+\/§) =3+V6.

So, the area of the square ABCD is equal to 3 + /6 s.u.

Second Solution. Letthe K, F', H, Z the the projection of point M on the sides
of the square. Then by Pythagorean theorem we can prove that M A? + MC? =
MB? + M D?. From the given condition we obtain MA = 1.

With center A and angle 60° we rotate the triangle AM E so we construct the
triangle AN B. After we continue as solution 1.

Problem 6. /G6]

Let ABCD be a convex quadrilateral, E and F points on sides AB and CD re-
spectively, such that AB : AE = CD : DF = n. Denote S area of quadrilateral
AEFD. Prove

- AB - CD +n(n —1)DA? +n(DA- BC

S
2n?

Solution
We will start with next
Lemma. Let ABC D be a quadrilateral and S its area. Then

<AB-C‘D+BC’~DA

< 2
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Proof. Construct point C’ such that BC' = CD and DC’ = BC. Obviously,
ABCD is congruent to ABC'D and the areas of quadrilaterals ABCD and
ABC'D are equal. Area of triangle is less or equal to a half of product of two
sides. Then

AD-DC'" AB-BC' AB-CD+ BC-DA

= " r <
S = Saapc' + Saasc < 5 + 3 5

Applying lemma on quadrilateral AEF D we get
2 AE-DF + DA-EF

S

- 2
J AB-CD +n?DA-EF
- 2n? '

C
D F
4 E
B

Let G be a point on diagonal BD such that DB : DG = n. From Thales’s
theorem we get GE = 11——}1)& and GF = BTC. Applying inequality of triangle
on AEGF we get

(n—1)AD + BC
- .

EF < EG+GF =

Now, we get

< AB-CD +n?DA-EF < AB-CD +n(n—-1)DA% +nDA - BC
- 2n? = 2n2 '

S




Number Theory

-~
Problem 1. [NT1] SF{Q
Solve equation

1005% + 2011 = 10067

in the set of natural numbers.

Solution

Note that 1005 = 2011 = —1 (mod 1006), so 1006 | 1005* + 2011¥ follows to,
Jfrom numbers x and y, exactly one is odd and one is even.

Consequence of this fact is that 8 can not divide 1005 + 2011Y, because, if x is
even, y is odd, then 1005" + 2011Y = 1+ 3 = 4 (mod 8), and if z is odd, y is
even, then 1005* + 2011Y = 5+ 1 = 6 (mod 8). Now, we conclude z < 2. We
know 2011 > 1006, so z > 1. Only possibility for z is z = 2, and this follows to
y = 1, and x = 2, which is unique solution of this equation.

Solution (z,y, z) = (2,1, 2).

Problem 2. [NT2]
Find all prime numbers p jor which the equation

z(y® — p) +y(z* — p) = 5p
has the solutions (z,y) in natural numbers.

Solution
Given equation is equivalent to (z + y)(zy — p) = 5p. We consider the following
cases:

1. Let z +y = 1 and xy = 6p. For prime p > 2 the equation 2* — x + 6p = 0
has no solutions.

2. Letz +y = 5 and xy = 2p. For prime p > 2 the equation z° — 5z +2p = 0
has the discriminant A = 25 — 8p. The inequality 25 — 8p > 0 implies p € {2, 3}.

15
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For p = 2 we obtain the solutions (1,4) and (4,1).

For p = 3 we obtain the solutions (2, 3) and (3, 2).

3. Letz+y = p and xy = p+>5. For primep > 2 the equation > —pz+p+5 = 0
has the discriminant A = p? — 4p — 20. The inequality p*> — 4p — 20 > 0 implies
p2T.

Letp? —4p—20 = ¢ with 1 < q < p. We obtain the equation (p—2)2—¢®> =24
which is equivalent to (p + q — 2)(p — q — 2) = 24. It follows that both numbers
P+ q— 2 and p — q — 2 shall be even. We have two subcases:

a)p+q—2=12 and p — q — 2 = 2. We have p=9, which is no prime.

b)p+q—2=6andp— q— 2= 4. Weobtainp = 7 and q¢ = 1. The equation
has the solutions (3,4) and (4, 3).

4. Letz +y = 5p and zy = p + 1. It follows that p & N.

So, the equation has natural solutions only for p € {2,3,7}.

Problem 3. [NT3] £|)|_

Find all positive integers n such that the equation y?+zy+3z = n(m2+xy+3y)
has a solution in positive integers z, y.

Solution

Clearly for n = 1 any pair z,y such that x = y is a solution. Now letn > 1,
sorxr#y. 0<n-1= %;—I—igi—g’;—l =%%. Aszr+y > 3, we
conclude thatz +y > 3 andy > z. Letd = GCD (z +y — 3,2% + zy + 3y).
Then d divides 2 + zy + 3y — z(z +y —3) = 3(z +y). Then d also divides

ﬂy—_3(y_z)

3(z+y)—-3(zx+y—-3)=9 henced=1,d=30rd =9. Asn—lz—rgﬂdT

and the positive integers £t4=° and 22+fiy+3y are relatively prime, it follows that
22—'*'%@1 must divide y — z, which leads to 22 + zy + 3y < dy — dz < and so
z?+dzx < (d—3—1z)y. Therefored = 9and x < 6. As now z+y—3 is a multiple
of 9, letz+y—3=9,k€e N,soy=9k+3—z. Hencen —1 = W
and as k and k (z + 3) + 1 are relatively prime, the number t = %";Te’s% must

be integer for some positive integer x < 6. It remains to consider these values of

x.

. Forx:lonehastz%<3andt>1,hencet=2,k=1,y=11and
n =3,

o Fora:=20nehast=%£—;—}andl < t < 2, so there are no solutions here.
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e Forz =3 onehast = gt—;% < 2 andt =1, there are no solutions here.

oFor:l::4onehast=%’:—j<2andt=11eadstok=3, y = 26 and

n=4.

oFor:r=5onehast=%;—¥<2andt=lleadstok.=8, y =70 and

n=29.

Answer:n=1,n=3,n=4andn=09.

Problem 4. [NT4] 6/#5
2

Find prime positive integers p, q such that 2p® — ¢* = 2(p + q)°.
Solution
First Solution The given equation is written

2’ (p-1)=q(Bg+4p) (1)
From (1) we get that p |g (3¢ + 4p) and since p must be prime we get that
plg or pl3g+4p

e Ifp | q then p = q, because p,q are primes. Then equation (1) becomes
2p® — 9p? = 0 which has not prime solutions.

e If p|3g+4p, then p | 3q. Since we have rejected the case we finally
conclude that p | 3 and then p = 3 (since p is prime).

Forp = 3, equation (1) gives that ¢*+4q—12 = 0 & g = 2 or ¢ = —6 (it is rejected)
Hence we have the solution (p, q) = (3,2).
Second Solution The given equation becomes

5 2p° +4pg+3¢°
pP=—"D—"

Since p positive integer then 2 | 3¢%. Since the numbers 2 and 3 are relatively
prime, we have 2|q?, thus ¢ = 2. So the initial equation is transformed to
p® — p? — 4p — 6 = 0. The only natural solution is p = 3. Hence we have the
solution (p,q) = (3,2)

Problem 5. [NT5]  f5(/
Find the least positive integer such that the sum of its digits is 2011 and the
product of its digits is a power of 6.
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Solution
First Solution.  Denote this number by N. Then N cannot contain the digits 0, 5
or 7; also, its digits must be written in non-decreasing order. Note that:

1. N cannot have more than 4 digits “1”, otherwise the substitution of the
digits 11111 — 23 would lead to a smaller number with the required prop-
erties.

2. N cannot have more than one “2” due to the substitution 22 — 4.

3. N cannot have more than two “4”. Indeed, suppose that there are at least
three “4”. Then the product of digits of N is at least 6° . In this case N
cannot contain “9” due to the substitution {44;9} — {36;8} , nor “6” due
to the substitution 4446 — 1188. But then it must contain at least six “3”,
which is impossible due to the substitution 33344 — 89.

4. N cannot have more than six “6” due to the substitution 6666666 — 1248999.

5. As 2011 = 9- 223 + 4, N has at least 224 digits; since at most 4 of them
are “1”, at least 220 digits of N have a prime divisor 2 or 3. Suppose that
among these 220 digits there are not more than 54 even digits; then the
odd ones are at least 220 — 54 = 166 and the power of 3 in N is at least
166, while the power of 2 in N is at most 3 - 54 = 162, contradicting the fact
that the product of digits of N is a power of 6. Thus N has at least 55 even
digits, including at most one “2”, at most two “4” and at most six “6”, and
hence at least 55 — (1 + 2 + 6) = 46 digits «8. Thus the product of digits of
N is at least (63)%¢ = 6138,

6. N cannot have more than one “3” due to the substitution {33;8} — {26;6}.

7. By 6), the digits “9” in N are at least [138 — (1 + 6)] : 2, i.e. at least 66. But
then N cannot have more than one “4” due to the mentioned substitution
{44;9} — {36;8}.

Thus N can have at most: four “1” one “2”, one “3”, one “4” and six “6”, so
if S is the sum of all digits of N, other than “8” and “9”, then0 < S < 49.
Let N have exactly z digits “8” and y digits “9”. After ignoring the digits
“6”, the powers of 2 and 3 in the product of the remaining digits are equal.
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The power of 2 is 3z,3z + 1,3z + 2 or 3z + 3, while the power of 3 is
2y or2y + 1, so -3 < 3z — 2y < 1. Also, S + 8z + 9y = 2011 implies
1962 < 8z + 9y < 2011. We express = + y = -4% (8z + 9y) + 315 B3z — 2y),
which due to the mentioned bounds leads to 229 < z + y < 233. Also
note that 2 (z + y) + 3z — 2y = 5z is a multiple of 5. We now consider the
possible values of T + y.

Ifx +y = 229 = 4 (mod5), then 3z — 2y = 2 (mod5), whence 3z — 2y = —3. By
r+y=229and 3z — 2y = -3 wegetz =91,y = 138, 8z + 9y = 1970, S = 41,
so N has at least 229 + 7 = 236 digits.

Ifr +y = 230, as above we get 3z — 2y =0,z = 92,y = 138,S =33 and N
has at least 230 + 6 = 236 digits.

Ifr+y=231, weget3r — 2y = -2,z = 92,y = 139, S = 24. Here N can
have less than 236 digits only if it has only “8”s, “9”s and four “6”, but then one
cannot have 3x — 2y = —2. Thus here again N has at least 236 digits.

Ifr+y =232 wegetdz —2y =1,z =93,y = 139,S = 16. The identity
3z — 2y = 1 shows that N has one “3”and no “2”s or “4”s. Then the “6”s and
“1”s in N must add up to 13, so there are at least three more digits, and here
again N has at least 236 digits.

Ifr+y=233, wegetdr —2y=—-1,z =93,y =140,S =7. AsS=T7,N
has at least two digits different from “8” and “9”. By3z — 2y = -land S =7,
this is possible only of these digits are a “3” and a “4 (the possibility “1” and “6”
violates 3z — 2y = —1). So N has exactly 235 digits: a “3”, a “4”, 93 “8”s and

140 “9”and N = 3488...899...9.
S ——

93 140
Remark: It is wrong to argue that in order to make N minimal, one must

take as many “9”s as possible; this leads to N = 144 ...4888899...9 that has

148 154
307 digits and hence is much larger.

Second Solution.  Denote this number by N. Then N cannot contain the
digits 0, 5 or 7; also, its digits must be written in non-decreasing order. Let N

have =1 ones, T twos, 3 threes, x4 fours, x¢ sixes, rg eights and Tg nines, so
1 + 229 + 33 + 4x4 + 626 + 825 + 929 = 2011 (1)

The product of digits is a power of 6 exactly when 9 + 2x4 + g + 3xg =
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Xy + 2g + vy, le
Iy — 2y + 2.!‘.1 + 3.1‘8 - '2;!‘9 =0 (2)

Denote by S the number of digits of N (r) + xo+x3+ 24+ 26 +28+T9 = S). Inorder
to make the coefficients of vy and g equal, we multiply (1) by 5 and add (2).
We get d3xg + 43xs + 3006 + 2204 + 14wy + 1lwe + 5y = 10055 <438 = 100565 +
W + 21y + 2903 + 3200 + 382y Then 10055 + 1326 + 2124 + 2923 + 3222 + 382
is @ multiple of 43 not less than 10055. The least such number is 10062, but
10062 = 10085 + 13wg + 21y + 2923 + 322 + 381 means that among 1, ..., Tg
there is at least one positive, so 10065 + 13x¢ + 2124 + 2923 + 3229 + 3821 2>
10065 + 13 = 10068. The next multiple of 43 is 235 - 43 = 10105 and from
10105 = 10065+ 13a+21a0y +2903+322x2+ 381 we get 50 = 13xg+21x4+2923+
32xs + 38x). By writing it as 13x¢ + 21 (x4 — 1) +29 (x3 — 1) + 3229 + 382, =0
we see that the only possibility isx) = &9 = x6 =0, 23 = 4 = 1. Then S = 235,

Xy = 93, xrg = 140. As S is strictly minimal, so N is N =
rs = 93,09 = 140. As § is strictly minimal, so N is N 348893 8991409

B |

[ 1
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Combinatorics

Problem 1. [c1] M NE

Inside of a square whose side length is 1 there are a few circles such that the
sum of their circumferences is equal to 10. Show that there exists a line that
meets at least four of these circles.

Solution

Find projections of all given circle on one of sides of a square. A projection of
each circle is a segment whose length is equal to the length of a diameter of this
circle. Since the sum of lengths of all circles’ diameters is equal 1—19. it follows
that a sum of lengths of all mentioned projections is equal % >'3. Because of
the side length of a square is 1, we conclude that at least one point, assumed a
point A, on the progjection side of a square is covered with at least four of these
projections. Hence, a perpendicular line to the projection side of a square passing
through the point A meets at least four of given circles, and so this is a line with
the desired property.

Problem 2. [C2]  MED

Can we divide an equilateral triangle into 201 1 small triangles using 122 straight
lines? (there should be 2011 triangles that are not themselves divided into
smaller parts and there should be no polygons which are not triangles)
Solution

For each of the sides of the triangle, we draw 37 equidistant, parallel lines to
it, (s.t. the distance between two neighboring lines is §1§ of the corresponding
height). In this way we get 382 = 1444 triangles. Then we delete 11 lines
which are closest to the vertex A and are parallel to side a and we draw 21 lines
perpendiculartoa, the:ﬁrst starting from vertex A and 10 on each of the two sides,
distributed symmetrically, as in the picture. In this way we get 26-21 + 10 = 556

21
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new triangles. Therefore we obtain a total of 2000 triangles, and we have used
37 + 37 + 26 + 21 = 121 lines. We draw the last line to be perpendicular to a,
starting from the 12 — th point on the side c, starting from B (including B). In this

way we obtain the required division.

A

\/

Problem 3. [C3] S (2

We can change natural number n in these three ways:

15t If the number n has at least two digits, we erase last digit and subtract that
digit from remaining number (for example, from number 123, we are getting
number 12 —3 = 9);

2"? We can change order digits in opposite order, if the last digit is not 0 (for
example, from number 123, we are getting 321);

374 We can multiply the number n by any number from set {1,2,3,...,2010}.

Can we get the number 21062011, from the number 1012011 ?

Solution

Answer is NO. We will prove that if the starting number n is divisible by 11, then
all numbers, which we can get from n, are divisible by 11.

In 1%, we get the number m = a — b = 11la — n, from the number n = 10a + b
and if 11 | n, then 11 | m.

We know that number is divisible by 11 if and only if difference of sum of digits
on even places and sum of digits on odd places is divisible by 11, so when we
use 2™, from number, which is divisible by 11, we get the number which is also
divisible by 11.

When we use 3™, the number we get, obvious, remains divisible by 11.

So, because number 1012011 is divisible by 11, but 21062011 is not, we can not
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get this number with this changes.

Problem 4. (C4]  f5[)]

In a group of n people, each one had a different ball. They performed a sequence
of swaps; in each swap, two people swapped the ball they currently had. Each
pair of people performed at least one swap. At the end each person had the ball
he/she had at the start. Find the least possible number of swaps, if:

an=5 bin=0_6.

Solution

We will denote the people by A, B, C, ... and their initial balls by the corre-
sponding small letters. Thus the initial state is Aa, Bb, Cc, Dd, Ee (, Ff). A swap
is denoted by the (capital) letters of the people involved. Two people are called
adjacent if their letters are adjacent.

a) Five people form % = 10 pairs, so at least 10 swaps are needed. In fact
10 swaps do suffice:

Swap AB, then BC, then CA; the state is now Aa, Bc, Cb, Dd, Ee.

Swap AD, then DE, then EA; the state is now Aa, Bc, Cb, De, Ed.

Swap BE, then CD; the state is now Aa, Bd, Ce, Db, Ec.

Swap BD, then CE; the state is Aa, Bb, Cc, Dd, Ee and all requirements are
Julfilled.

Answer: 10.

b) Six people form 6.5/2=15 pairs, so at least 15 swaps are needed. We
will prove that the final number of swaps must be even. Call a pair of balls
“inverted”, if the ball with the former letter is in the person with the latter one.
Let T denote the total number of inverted pairs; at the start T = 0. A swap
performed by adjacent people changes T by 1. Any swap is equivalent to an odd
number of swaps performed by adjacent people, so it changes the parity of T.
Since at the end T = 0, the total number of swaps must be even. Thus at least
16 swaps are needed. In fact 16 swaps do suffice:

Swap AB, then BC, then CA; the state is now Aa, Bc, Cb, Dd, Ee, FY.
Swap AD, then DE, then EA; the state is now Aa, Bc, Cb, De, Ed, FY.
Swap FB, then BE, then EF; the state is now Aa, Bd, Cb, De, Ec, FYf.
Swap FC, then CD, then DF; the state is now Aa, Bd, Ce, Db, Ec, FY.
Swap BD, then CE, then twice AF; now all requirements are fulfilled.



24

Answer: 16.

Problem 5. [C5] & -

Set S, subset of a set of natural numbers, is called good, if for each element
x € S, x does not divide the sum of remaining numbers in S. Find the maximal
possible number of elements of one good set, which is subset of the set A =
{1,2,...,63}.

Solution

Let set B be the good subset of A, which is having maximum number of elements.
We conclude that number 1 does not belong to B, because 1 divides all natural
numbers. So, maximum number elements of this set is less or equal 62.

Based on the properties of divisibility, we know that = divide (does not divide)
sum of remaining numbers if and only if = divide (does not divide) sum of all
numbers in the set B. Now, we can prove that set B has less than 62 numbers
because, if B has exactly 62 elements, than B = {2,3,.. ., @} but this set is not
good, because sum of elements from B is 2015 and 5 | 2015. B has less or equal
than 61 elements. We are looking for the set, whose elements does not divide
sum of them, so the best way to do that is making a sum of elements be a prime
number. Sum2+ 3+ - - - + 63 is equal 2015 and we have to remove at least one
number, so we see that we can remove 4 and sum of remaining numbers will be

2011, which is prime number. Now, we conclude that set B = {2,3,5,6,...,63}

is good. The maximal number of elements of good subset of A is 61.

Problem 6. [C6] @

Let ABC be an equilateral triangle of side k > 0. On each side of the triangle we
consider n—1 points, which divide the side to n equal line segments. We draw all
the line segments ¢; with ends from the n — 1 points we have considered on each
side, not both on the same side, which are parallel to a side of the triangle. In
this way the given equilateral triangle ABC is divided ton? equilateral triangles
of side ;1’5 In the ﬁgure you can see the case with n = 4. We consider the set
S which consists of the vertices of the triangle, the points we have considered
on the three sides and the points of intersection of the line segments ¢;. With
vertices from the set we consider rhombuses of two types as follows:
Rhombuses of type M are those of side length -f; and rhombuses of type D are
those of side length -2;’° Let m the number of rhombuses of type M and d the

N B B B B B b B B B B B B O O OO OEFE-FCFOF
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number of rhombuses of type D. Find the difference m — d with respect to n.
A

Figure 1

Solution

Each line segment with ends from the set S of length % (not lying on a side of
the triangle) is the diagonal one and only one rhombus of type M. The segments
parallel to one side of the triangle are

-1
1+2+3+-~-+(n—1)=2£’1.2__2
Therefore the total number of rhombus of type M is:

n(n—1)
=8—
" 2

Figure 3

For the counting of rhombi of type D we distinguish the points of S which are
interior points of the triangle ABC' into three categories as follows:
The first category consists of points which are centers of one exactly rhombus of
type D. These points are only 3, for every n. In figure (3) you can see the case
forn = 8.
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The second category consists of points which are centers of two exactly
rhombi of type D. These points lie on the segments which are parallel to the
sides of the triangle ABC' and of the shortest possible distance from them. On
each such segment there exist n — 4 such points and therefore we have 3(n — 4)
points of this category. In figure (4) you can see these points forn = 8 .

The third category consists of the rest of points which are centers of three
rhombi of type D. These points are totally:

(n—5)(n—4)

14243+ +(n-5)= 5

In figure (5) you can see these points for n = 8.

Figure 4

Figure 5

Hence the number of rhombi of type is the following:
d= 3+3(n—4)2+3("_5)2ﬂ

@d=g(2+(n—l)(n—4))
Finally we havem — d = 3(2n — 3).

Problem 7. [C7] M\y\f/

Consider a rectangle whose lengths of sides are natural numbers. If one places
as many squares as possible, each with area 3, inside of a rectangle, so that
their sides are parallel to the sides of a rectangle, then a maximal number of
these squares fill exactly 50% of the area of a rectangle. Determine dimensions
of all rectangles with this property.

Remark: /3 = 1,73205....

’.|
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Solution

Let ABCD be arectangle with AB = M and AD = n wherem and n are natural
numbers such that m > n > 2. Suppose that inside of a rectangle ABCD is
placed a rectangular lattice consisting of k identical squares whose areas are
equals 3, where k of these squares are placed along the side AB, and | of these
squares are placed along the side AD (see Figure below).

D C
13
V3
A k3 e

The sum of areas of all these squares is equal to 3kl. Besides of the obvious
conditions
kV3<m and IV3>n 4

by the assumption of the "maximality of lattice” consisting of these squares, we
conclude that must be

(k+1)V3>m and (+1)V3>n (5

Hence, the proposed problem is to determine all pairs m,n of natural numbers
such thatm > n > 2 for which the ratio

3kl
mn

Tmn =

6

is equal to 0,5, where k and | are natural numbers exactly determined by the
conditions (4) and (5).

Observe first that for n > 6, and so m > n > 6, using that by (5) hold kV3 >
m — V3 and Iv/3 > n — /3, we have

BB (m- VB - VD)

mn mn

2 2
= (1_§) (1—?) > (1———?) > (1——?) = 0.506... > 0.5

m,n
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Hence, the required condition 7, , = 0.5 under the assumption m > n yields
n <5, thatis, n € {2,3,4,5}. Now we consider these four possible cases.
Case 1: n = 2 Then!l = 1 and thus as above we get

_ 3%k _v3-kv3_ VB-(m-V3) ﬁ( «/??)

) [
m

™m2=om = " om om 2

which is greater than 0,5 for each m > (3/3 + 3)/2 = 4.098..... Hence, must
bem € {2,3,4}. Immediate calculations give 195 = ro4 = 3/4 (with k = 1,2
respectively) and ro 3 = 1/2 (with k = 1).

Case 2: n = 3 Thenl = 1 and thus as above we get

£=‘/§'k\/§>\/§'(m_\/§)_£§<1_£)

3m 3m 3m 3 m

Tm,3 =

which is greater than 0,5 for each m > 4/3 + 6 = 12.928..... Hence, must
be m € {2,3,4,...,11,12}. Direct calculations give r33 = 1/3 (with k = 2),
T34 = T3 = T3g = T310 = 7312 = 1/2 (with k = 2,3,4,5,6, respectively),
r35 = 2/5 (with k = 2), r37 = 4/7 (withk = 4 ), 139 = 5/9 (with k = 5) and
r3,11 = 6/11 (with k = 6).

Case 3: n = 4 Thenl = 2 and thus as above we get

6k :\/ﬁ-k\/ﬁ>\/§-(m—\/§)_\/§( \/?7)

N, ek - | =
Ymih 44m 2m 2m 2 m

which is greater than 0,5 for eachm > (3v/3+3)/2 = 4.098.... . Hence, must be
m =4 . A calculation yields r4 4 = 3/4 (withk = 2).
Case 4: n = 5 Thenl = 2 and thus as above we get

_ 6k _ 23 k3 23 (m-V3) _2\/5( \/5)
- == ,

= T e s
Tm.5 5m 5m 5m m

which is greater than 0,5 for each m > 12(4v/3 + 5) /23 = 6.223.... Hence, must
be m € {5,6}. Calculation imply r55 = 12/25 (with K = 2) and 56 = 3/5 (with
K =3).

Finally, from all the above cases we see that
rij = 0,5 for (1,5) € {(2,3),(3,4),(3,6),(3,8),(3,10),(3,12)}. These pairs
present the dimensions of all rectangles with desired property.

Problem 8. [C8] Q\O“‘
Determine the polygons with n sides, n > 4, not necessarily convex, that satisfy

- W -Er I B B B B B B B B B B OB BB B
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the property that the reflection of every vertex of polygon with respect to every
diagonal of the polygon does not fall outside the polygon.

Note:A diagonal is any segment joining two non-neighbouring vertices of the
polygon; the reflection is considered with respect to the support line of the diag-
onal.

Solution

A polygon with this property has to be convex, otherwise, we consider an edge of
the convex hull of the set of the vertices that is not an edge of the polygon. All the
other vertices are situated in one of the half planes determined by the support-
line of this edge, therefore the reflection of the other vertices falls outside the
polygonal.

Now we fix a diagonal. It divides the polygon into two parts pl, p2. The
reflection of p1 falls into the interior of p2 and vice versa. As a consequence, the
diagonal is a symmetry axis for the polygon. Then every diagonal of the polygon
bisects the angles of the polygonal and this means that there are 4 vertices and
the polygon is a rhombus.

Any rhombus satisfies the desired condition.

Problem 9. [C9] P‘OM
Decide if it is possible to consider 2011 points in a plane such that:

i) the distance between every two of these points is different from 1, and

ii) every unit circle centered at one of these points leaves exactly 1005 of the
points outside the circle.
Solution
It is not possible. If such a configuration would exist, the number of segments
starting from any of the 2011 points towards the other ones and having length
less than 1 would be 1005. Their total number would be 1005 - 2011. But each
segment is counted twice, while 1005 - 2011 is odd, false.



