THE THIRD JTST FOR JBMO - Saudi Arabia, 2017

Problem 1. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove the inequality

$$
\frac{a\left(a-b^{2}\right)}{a+b^{2}}+\frac{b\left(b-c^{2}\right)}{b+c^{2}}+\frac{c\left(c-a^{2}\right)}{c+a^{2}} \geq 0 .
$$

Problem 2. Find all pairs of positive integers (p, q) such that both the equations $x^{2}-p x+q=0$ and $x^{2}-q x+p=0$ have integral solutions.

Problem 3. Let $B C$ be a chord of a circle (O) such that $B C$ is not a diameter. Let $A E$ be the diameter perpendicular to $B C$ such that A belongs to the larger arc $B C$ of (O). Let D be a point on the larger arc $B C$ of (O) which is different from A. Suppose that $A D$ intersects $B C$ at S and $D E$ intersects $B C$ at T. Let F be the midpoint of $S T$ and I be the second intersection point of the circle ($O D F$) with the line $B C$.

1. Let the line passing through I and parallel to $O D$ intersect $A D$ and $D E$ at M and N, respectively. Find the maximum value of the area of the triangle $M D N$ when D moves on the larger arc $B C$ of (O) (such that $D \neq A$).
2. Prove that the perpendicular from D to $S T$ passes through the midpoint of $M N$.

Problem 4. Consider a set S of 200 points on the plane such that 100 points are the vertices of a convex polygon A and the other 100 points are in the interior of the polygon. Moreover, no three of the given points are collinear. A triangulation is a way to partition the interior of the polygon A into triangles by drawing the edges between some two points of S such that any two edges do not intersect in the interior, and each point in S is the vertex of at least one triangle.

1. Prove that the number of edges does not depend on the triangulation.
2. Show that for any triangulation, one can color each triangle by one of three given colors such that any two adjacent triangles have different colors.

Solutions:

Problem 1. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove the inequality

$$
\frac{a\left(a-b^{2}\right)}{a+b^{2}}+\frac{b\left(b-c^{2}\right)}{b+c^{2}}+\frac{c\left(c-a^{2}\right)}{c+a^{2}} \geq 0
$$

Solution:

We have $\frac{a\left(a-b^{2}\right)}{a+b^{2}}=\frac{a\left(a+b^{2}\right)-2 a b^{2}}{a+b^{2}}=a-\frac{2 a b^{2}}{a+b^{2}} \leq a-\frac{2 a b^{2}}{2 \sqrt{a} b}=a-b \sqrt{a}$.
Similarly, $\frac{b\left(b-c^{2}\right)}{b+c^{2}} \leq b-c \sqrt{b}$ and $\frac{c\left(c-a^{2}\right)}{c+a^{2}} \leq c-a \sqrt{c}$. Thus, it is sufficient to prove that

$$
a+b+c \geq b \sqrt{a}+c \sqrt{b}+a \sqrt{c}
$$

By Cauchy-Schwarz, we have

$$
(a b+b c+c a)(a+b+c) \geq(b \sqrt{a}+c \sqrt{b}+a \sqrt{c})^{2}
$$

Therefore, it is enough to prove that

$$
a+b+c \geq a b+b c+c a
$$

This inequality follows from

$$
(a+b+c)^{2} \geq 3(a b+b c+c a) \geq(a+b+c)(a b+b c+c a)
$$

Equality holds if and only if $a=b=c=1$.
Problem 2. Find all pairs of positive integers (p, q) such that both the equations $x^{2}-p x+q=0$ and $x^{2}-q x+p=0$ have integral solutions.

Solution:

Let $a, b \in \mathbb{Z}$ the solutions of the equation $x^{2}-p x+q=0$. Then $a+b=p$ and $a b=q$, hence $a, b>0$. Therefore $(a-1)(b-1) \geq 0$, i.e. $p-q+1 \geq 0$.
Similarly, from the other equation, it follows that $q-p+1 \geq 0$, hence $p-q \in$ $\{-1,0,1\}$.

- If $p=q$, the equation $x^{2}-p x+p=0$ has to have integer solutions. This means that $\Delta=p^{2}-4 p$ has to be a perfect square. But $p^{2}-4 p=k^{2} \Leftrightarrow(p-2)^{2}-k^{2}=$ $4 \Leftrightarrow(p-2-k)(p-2+k)=4$. Note that $p-2-k$ and $p-2+k$ have the same parity, so the only possibility is $p-2-k=p-2+k=2$, i.e. $p=4$. Indeed, for $p=4$, the solutions of $x^{2}-p x+p=0$ are both equal to 2 , hence integers.
- If $p=q+1$, the equation $x^{2}-p x+q=0$ has the integer solutions 1 and q. The equation $x^{2}-q x+p=0$, which becomes $x^{2}-q x+q+1=0$, needs to have integer solutions. As above, $\Delta=q^{2}-4 q-4=k^{2} \Leftrightarrow(q-2-k)(q-2+k)=8 \Leftrightarrow$ $q-2-k=2, q-2+k=4 \Rightarrow q=5$. We obtain $(p, q)=(6,5)$ which satisfies indeed the condition.
- Similarly, if $p-q=-1$ we obtain the pair $(p, q)=(5,6)$.

In conclusion, there are three convenient pairs: $(4,4),(5,6)$ and $(6,5)$.
Problem 3. Let $B C$ be a chord of a circle (O) such that $B C$ is not a diameter. Let $A E$ be the diameter perpendicular to $B C$ such that A belongs to the larger arc $B C$ of (O). Let D be a point on the larger arc $B C$ of (O) which is different from A. Suppose that $A D$ intersects $B C$ at S and $D E$ intersects $B C$ at T. Let F be the midpoint of $S T$ and I be the second intersection point of the circle ($O D F$) with the line $B C$.

1. Let the line passing through I and parallel to $O D$ intersect $A D$ and $D E$ at M and N, respectively. Find the maximum value of the area of the triangle $M D N$ when D moves on the larger arc $B C$ of (O) (such that $D \neq A$).
2. Prove that the perpendicular from D to $S T$ passes through the midpoint of $M N$.

Solution:

1. First, note that $\angle A D E=90^{\circ}$, hence $D O$ and $D F$ are medians in the triangles $A D E$ and $S D T$, respectively.
Then $\angle O D F=\angle O D T+\angle F D T=\angle O E T+\angle F T D=90^{\circ}$. Hence, $\angle O I F=$ $180^{\circ}-\angle O D F=90^{\circ}$, which implies that I is the midpoint of $B C$. Since $O D E$ is isosceles triangle, it follows that $I N E$ and $I M A$ are also isosceles, which implies that $I E=I N$ and $I M=I A$. Hence $M N=I M-I N=I A-I E=$ const.
As triangles $D M N$ and $D A E$ are similar with a constant scale factor, it follows that, in order to maximize the area of $D M N$, we have to maximize the area of
triangle $A D E$. We have

$$
[A D E]=\frac{1}{2} D A \cdot D E \leq \frac{D A^{2}+D E^{2}}{4}=\frac{A E^{2}}{4} .
$$

The equality occurs when $D A=D E$, i.e. D lies on the circle such that $A D E$ is isosceles right triangle.
2. If P is the midpoint of $M N$, then

$$
\angle P D N=\angle P N D=\angle I N E=\angle I E N
$$

thus $D P \| A E$, or the perpendicular line from D to $S T$ passes through the midpoint of $M N$.

Problem 4. Consider a set S of 200 points on the plane such that 100 points are the vertices of a convex polygon A and the other 100 points are in the interior of the polygon. Moreover, no three of the given points are collinear. A triangulation is a way to partition the interior of the polygon A into triangles by drawing the edges between some two points of S such that any two edges do not intersect in the interior, and each point in S is the vertex of at least one triangle.

1. Prove that the number of edges does not depend on the triangulation.
2. Show that for any triangulation, one can color each triangle by one of three given colors such that any two adjacent triangles have different colors.

Solution:

1. Suppose that we have k triangles in some triangulation. By calculating the sum of all angles of these triangles, we have $180^{\circ} \cdot k$.
The sum of interior angles of A is $180^{\circ} \cdot 98$.
The sum of the angles around each of the 100 points situated in the interior of A is $360^{\circ} \cdot 100$.
Hence, we have

$$
180^{\circ} \cdot k=180^{\circ} \cdot 98+360^{\circ} \cdot 100 \Leftrightarrow k=298 .
$$

Each triangle gives 3 edges and among them, there are 100 edges of A. Note that the interior edges are counted twice, hence the number of edges in each triangulation is

$$
\frac{3 \cdot 298-100}{2}+100=497
$$

2. We prove that for any polygon with n vertices containing m points in its interior such that no three of these $m+n$ points are collinear, and for any triangulation, we can color the triangles with 3 colors such that any two triangles sharing a common side have different colors.
We prove the assertion by induction after the number $m+n$ of total points.
If $m+n=3$, then $n=3$ and $m=0$ and the conclusion is obvious.
Supposing the statement to be true for any configuration with less than $n+m$
points, consider a polygon $A_{1} A_{2} \ldots A_{n}$ having m points in its interior and a triangulation.

- Suppose there is a vertex A_{k} such that $A_{1} A_{2} A_{k}$ is one of the triangles of the triangulation. If $k=3$, the polygon $A_{1} A_{3} A_{4} \ldots A_{n}$ is triangulated and can, by the induction hypothesis for $n+m-1$ total points, be colored conveniently. For the triangle $A_{1} A_{2} A_{3}$ one can choose a color, different from the color already given to the triangle containing $\left[A_{1} A_{3}\right]$.
We proceed similarly for the case when $A_{k}=A_{n}$. In the remaining cases, consider the polygons $A_{2} A_{3} \ldots A_{k}$ and $A_{k} A_{k+1} \ldots A_{1}$. Both are triangulated and, according to the induction hypothesis, they can be colored conveniently. We can still find a suitable color for the triangle $A_{1} A_{2} A_{k}$, different from the colors of the triangles containing $\left[A_{1} A_{k}\right]$ and $\left[A_{2} A_{k}\right]$.
- There must be a point X such that the triangle $A_{1} A_{2} X$ is one of the triangles of the triangulation. If X is not a vertex, it must be an interior point. In the triangulation, X must be joined by segments with at least 3 points (among those being A_{1} and A_{2}; the sum of the angles around X must be 360°). Consider the polygon $P=A_{1} A_{2} B_{1} B_{2} \ldots B_{j}$ determined by the points joined with X. Then X is the only point of those $n+m$ interior to this polygon. Now remove the point X. The triangulation in the interior of P being thus destroyed, we consider an arbitary triangulation of P and keep the rest of the initial triangulation. We obtain a triangulation for an n-gon having $m-1$ interior points. According to the inductive hypothesis, we can color conveniently this triangulation. Now we put X back and get back to our initial configuration. We keep the coloring of the triangles outside P (if any), and repaint the interior of P according to our triangulation. We have to color the triangles $X A_{2} B_{1}, X B_{1} B_{2}, \ldots, X B_{j} A_{1}$ and $X A_{1} A_{2}$. For $X A_{2} B_{1}$ there is at most one forbidden color, the one of the already colored triangle containing the side $\left[A_{2} B_{1}\right]$ (if such a triangle exists). For $X B_{1} B_{2}$ there are at most two forbidden colors, the ones of the triangle $X A_{2} B_{1}$ and the color of the triangle exterior to P that contains the side $\left[B_{1} B_{2}\right]$. For each of the following triangles, there are at most two forbidden colors, so there is always an available color to use. Finally, for the triangle $X A_{1} A_{2}$, there is an extra restriction: its color needs to be different from the color of not only $X B_{j} A_{1}$, but also from the color of $X A_{2} B_{1}$. Fortunately, there is no extra restriction from the exterior of $\left[A_{1} A_{2}\right]$, so there is still a third available color.
This concludes our induction.

