
THE THIRD JTST FOR JBMO - Saudi Arabia, 2017

Problem 1. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove
the inequality

a(a− b2)

a + b2
+

b(b− c2)

b + c2
+

c(c− a2)

c + a2
≥ 0.

Problem 2. Find all pairs of positive integers (p, q) such that both the equations
x2 − px + q = 0 and x2 − qx + p = 0 have integral solutions.

Problem 3. Let BC be a chord of a circle (O) such that BC is not a diameter.
Let AE be the diameter perpendicular to BC such that A belongs to the larger
arc BC of (O). Let D be a point on the larger arc BC of (O) which is different
from A. Suppose that AD intersects BC at S and DE intersects BC at T . Let F
be the midpoint of ST and I be the second intersection point of the circle (ODF )
with the line BC.
1. Let the line passing through I and parallel to OD intersect AD and DE at M
and N , respectively. Find the maximum value of the area of the triangle MDN
when D moves on the larger arc BC of (O) (such that D 6= A).
2. Prove that the perpendicular from D to ST passes through the midpoint of MN .

Problem 4. Consider a set S of 200 points on the plane such that 100 points are
the vertices of a convex polygon A and the other 100 points are in the interior of
the polygon. Moreover, no three of the given points are collinear. A triangulation
is a way to partition the interior of the polygon A into triangles by drawing the
edges between some two points of S such that any two edges do not intersect in
the interior, and each point in S is the vertex of at least one triangle.
1. Prove that the number of edges does not depend on the triangulation.
2. Show that for any triangulation, one can color each triangle by one of three given
colors such that any two adjacent triangles have different colors.
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Solutions:

Problem 1. Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3. Prove
the inequality

a(a− b2)

a + b2
+

b(b− c2)

b + c2
+

c(c− a2)

c + a2
≥ 0.

Solution:

We have
a(a− b2)

a + b2
=

a(a + b2)− 2ab2

a + b2
= a − 2ab2

a + b2
≤ a − 2ab2

2
√
a b

= a − b
√
a.

Similarly,
b(b− c2)

b + c2
≤ b − c

√
b and

c(c− a2)

c + a2
≤ c − a

√
c. Thus, it is sufficient to

prove that
a + b + c ≥ b

√
a + c

√
b + a

√
c.

By Cauchy-Schwarz, we have

(ab + bc + ca)(a + b + c) ≥
(
b
√
a + c

√
b + a

√
c
)2

.

Therefore, it is enough to prove that

a + b + c ≥ ab + bc + ca.

This inequality follows from

(a + b + c)2 ≥ 3(ab + bc + ca) ≥ (a + b + c)(ab + bc + ca).

Equality holds if and only if a = b = c = 1.

Problem 2. Find all pairs of positive integers (p, q) such that both the equations
x2 − px + q = 0 and x2 − qx + p = 0 have integral solutions.
Solution:
Let a, b ∈ Z the solutions of the equation x2 − px + q = 0. Then a + b = p and
ab = q, hence a, b > 0. Therefore (a− 1)(b− 1) ≥ 0, i.e. p− q + 1 ≥ 0.
Similarly, from the other equation, it follows that q − p + 1 ≥ 0, hence p − q ∈
{−1, 0, 1}.
• If p = q, the equation x2 − px + p = 0 has to have integer solutions. This means
that ∆ = p2 − 4p has to be a perfect square. But p2 − 4p = k2 ⇔ (p− 2)2 − k2 =
4⇔ (p− 2− k)(p− 2 + k) = 4. Note that p− 2− k and p− 2 + k have the same
parity, so the only possibility is p − 2 − k = p − 2 + k = 2, i.e. p = 4. Indeed, for
p = 4, the solutions of x2 − px + p = 0 are both equal to 2, hence integers.
• If p = q + 1, the equation x2 − px + q = 0 has the integer solutions 1 and q.
The equation x2 − qx + p = 0, which becomes x2 − qx + q + 1 = 0, needs to have
integer solutions. As above, ∆ = q2 − 4q − 4 = k2 ⇔ (q − 2− k)(q − 2 + k) = 8⇔
q − 2 − k = 2, q − 2 + k = 4 ⇒ q = 5. We obtain (p, q) = (6, 5) which satisfies
indeed the condition.
• Similarly, if p− q = −1 we obtain the pair (p, q) = (5, 6).
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In conclusion, there are three convenient pairs: (4, 4), (5, 6) and (6, 5).

Problem 3. Let BC be a chord of a circle (O) such that BC is not a diameter.
Let AE be the diameter perpendicular to BC such that A belongs to the larger
arc BC of (O). Let D be a point on the larger arc BC of (O) which is different
from A. Suppose that AD intersects BC at S and DE intersects BC at T . Let F
be the midpoint of ST and I be the second intersection point of the circle (ODF )
with the line BC.
1. Let the line passing through I and parallel to OD intersect AD and DE at M
and N , respectively. Find the maximum value of the area of the triangle MDN
when D moves on the larger arc BC of (O) (such that D 6= A).
2. Prove that the perpendicular from D to ST passes through the midpoint of
MN .
Solution:

I

1. First, note that ∠ADE = 90◦, hence DO and DF are medians in the triangles
ADE and SDT , respectively.
Then ∠ODF = ∠ODT + ∠FDT = ∠OET + ∠FTD = 90◦. Hence, ∠OIF =
180◦ − ∠ODF = 90◦, which implies that I is the midpoint of BC. Since ODE is
isosceles triangle, it follows that INE and IMA are also isosceles, which implies
that IE = IN and IM = IA. Hence MN = IM − IN = IA− IE = const.
As triangles DMN and DAE are similar with a constant scale factor, it follows
that, in order to maximize the area of DMN , we have to maximize the area of
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triangle ADE. We have

[ADE] =
1

2
DA ·DE ≤ DA2 + DE2

4
=

AE2

4
.

The equality occurs when DA = DE, i.e. D lies on the circle such that ADE is
isosceles right triangle.
2. If P is the midpoint of MN , then

∠PDN = ∠PND = ∠INE = ∠IEN,

thus DP ‖ AE, or the perpendicular line from D to ST passes through the mid-
point of MN .

Problem 4. Consider a set S of 200 points on the plane such that 100 points are
the vertices of a convex polygon A and the other 100 points are in the interior of
the polygon. Moreover, no three of the given points are collinear. A triangulation
is a way to partition the interior of the polygon A into triangles by drawing the
edges between some two points of S such that any two edges do not intersect in
the interior, and each point in S is the vertex of at least one triangle.
1. Prove that the number of edges does not depend on the triangulation.
2. Show that for any triangulation, one can color each triangle by one of three given
colors such that any two adjacent triangles have different colors.
Solution:
1. Suppose that we have k triangles in some triangulation. By calculating the sum
of all angles of these triangles, we have 180◦ · k.
The sum of interior angles of A is 180◦ · 98.
The sum of the angles around each of the 100 points situated in the interior of A
is 360◦ · 100.
Hence, we have

180◦ · k = 180◦ · 98 + 360◦ · 100⇔ k = 298.

Each triangle gives 3 edges and among them, there are 100 edges of A. Note that the
interior edges are counted twice, hence the number of edges in each triangulation
is

3 · 298− 100

2
+ 100 = 497.

2. We prove that for any polygon with n vertices containing m points in its interior
such that no three of these m+n points are collinear, and for any triangulation, we
can color the triangles with 3 colors such that any two triangles sharing a common
side have different colors.
We prove the assertion by induction after the number m + n of total points.

If m + n = 3, then n = 3 and m = 0 and the conclusion is obvious.
Supposing the statement to be true for any configuration with less than n + m
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points, consider a polygon A1A2 . . . An having m points in its interior and a trian-
gulation.
• Suppose there is a vertex Ak such that A1A2Ak is one of the triangles of the
triangulation. If k = 3, the polygon A1A3A4 . . . An is triangulated and can, by the
induction hypothesis for n + m − 1 total points, be colored conveniently. For the
triangle A1A2A3 one can choose a color, different from the color already given to
the triangle containing [A1A3].
We proceed similarly for the case when Ak = An. In the remaining cases, consider
the polygons A2A3 . . . Ak and AkAk+1 . . . A1. Both are triangulated and, according
to the induction hypothesis, they can be colored conveniently. We can still find a
suitable color for the triangle A1A2Ak, different from the colors of the triangles
containing [A1Ak] and [A2Ak].
• There must be a point X such that the triangle A1A2X is one of the triangles
of the triangulation. If X is not a vertex, it must be an interior point. In the tri-
angulation, X must be joined by segments with at least 3 points (among those
being A1 and A2; the sum of the angles around X must be 360◦). Consider the
polygon P = A1A2B1B2 . . . Bj determined by the points joined with X. Then X
is the only point of those n + m interior to this polygon. Now remove the point
X. The triangulation in the interior of P being thus destroyed, we consider an ar-
bitary triangulation of P and keep the rest of the initial triangulation. We obtain a
triangulation for an n-gon having m−1 interior points. According to the inductive
hypothesis, we can color conveniently this triangulation. Now we put X back and
get back to our initial configuration. We keep the coloring of the triangles outside
P (if any), and repaint the interior of P according to our triangulation. We have to
color the triangles XA2B1, XB1B2, . . . , XBjA1 and XA1A2. For XA2B1 there is
at most one forbidden color, the one of the already colored triangle containing the
side [A2B1] (if such a triangle exists). For XB1B2 there are at most two forbidden
colors, the ones of the triangle XA2B1 and the color of the triangle exterior to P
that contains the side [B1B2]. For each of the following triangles, there are at most
two forbidden colors, so there is always an available color to use. Finally, for the
triangle XA1A2, there is an extra restriction: its color needs to be different from
the color of not only XBjA1, but also from the color of XA2B1. Fortunately, there
is no extra restriction from the exterior of [A1A2], so there is still a third available
color.
This concludes our induction.
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