
THE SECOND JTST FOR JBMO - Saudi Arabia, 2017

Problem 1. Given a polynomial f(x) = x4+ax3+bx2+cx. It is known that each of
the equations f(x) = 1 and f(x) = 2 has four real roots (not necessarily distinct).
Prove that if the roots of the first equation satisfy the equality x1 + x2 = x3 + x4,
then the same equation holds for the roots of the second equation.

Problem 2. A positive integer k > 1 is called nice if for any pair (m,n) of positive
integers satisfying the condition kn+m | km+ n we have n | m.
1. Prove that 5 is a nice number.
2. Find all the nice numbers.

Problem 3. Let (O) be a circle, and BC be a chord of (O) such that BC is not a
diameter. Let A be a point on the larger arc BC of (O), and let E, F be the feet
of the perpendiculars from B and C to AC and AB, respectively.
1. Prove that the tangents to (AEF ) at E and F intersect at a fixed point M when
A moves on the larger arc BC of (O).
2. Let T be the intersection of EF and BC, and let H be the orthocenter of ABC.
Prove that TH is perpendicular to AM .

Problem 4. Find the number of ways one can put numbers 1 or 2 in each cell of
an 8×8 chessboard in such a way that the sum of the numbers in each column and
in each row is an odd number. (Two ways are considered different if the number
in some cell in the first way is different from the number in the cell situated in the
corresponding position in the second way).
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Solutions:

Problem 1. Given a polynomial f(x) = x4+ax3+bx2+cx. It is known that each of
the equations f(x) = 1 and f(x) = 2 has four real roots (not necessarily distinct).
Prove that if the roots of the first equation satisfy the equality x1 + x2 = x3 + x4,
then the same equation holds for the roots of the second equation.
Solution:
Consider the equation f(x) = 1, i.e. x4 + ax3 + bx2 + cx = 1. Since it has four
roots, x1, x2, x3, x4, we can write it as (x− x1)(x− x2)(x− x3)(x− x4) = 0.

Note that x1 + x2 = x3 + x4 = −
a

2
. We can rewrite the equation(

x2 − (x1 + x2)x+ x1x2
) (
x2 − (x3 + x4)x+ x3x4

)
= 0

or (
x2 +

a

2
x+ x1x2

)(
x2 +

a

2
x+ x3x4

)
= 0.

The equation f(x) = 2 can be written as
(
x2 +

a

2
x+ x1x2

)(
x2 +

a

2
x+ x3x4

)
=

1. Putting y = x2 +
a

2
x, we get (y + x1x2)(y + x3x4) = 1. Since f(x) = 2 has four

real roots, this equation has two roots, say y = α and y = β. This implies that the

equations x2 +
a

2
x = α and x2 +

a

2
x = β have two solutions each. It follows that

the four roots, x′1, x
′
2, x

′
3, x

′
4, of the equation f(x) = 2 can be divided into two

pairs that have the sum equal to −a
2
, which means x′1+x

′
2 = x′3+x

′
4. This finishes

the proof.

Problem 2. A positive integer k > 1 is called nice if for any pair (m,n) of positive
integers satisfying the condition kn+m | km+ n we have n | m.
1. Prove that 5 is a nice number.
2. Find all the nice numbers.
Solution:
1. For k = 5, we need to prove that for all m, n satisfying 5n+m | 5m+n we have

n | m. Note that 5n +m ≤ 5m + n means n ≤ m, hence 1 ≤ 5m+ n

5n+m
< 5. Then

A =
5m+ n

5n+m
∈ {1, 2, 3, 4}. We consider the cases:

• If A = 1 then m = n.
• If A = 2 then 5m+ n = 10n+ 2m, i.e. m = 3n.
• If A = 3 then 5m+ n = 15n+ 3m and m = 7n.
• If A = 4 then 5m+ n = 20n+ 4m, i.e. m = 19n.
So in all cases, we always have n | m, which implies that k = 5 is a nice number.
2. We can directly check that k = 2 is a nice number. Consider some nice number

k > 2. As above, it follows that n ≤ m and 1 ≤ km+ n

kn+m
< k. Thus A =

km+ n

kn+m
∈

{1, 2, 3, . . . , k − 1}. In case A = 2, we have km+ n = 2m+ 2kn,
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or
m

n
=

2k − 1

k − 2
. We must have

m

n
∈ Z, i.e.

2k − 1

k − 2
= 2 +

3

k − 2
∈ Z. As k > 2,

it follows that k − 2 ∈ {1, 3}, or k ∈ {3, 5}. It is easy to check that 3 is indeed a
nice number. In conclusion, the only nice numbers are 2, 3 and 5.

Problem 3. Let (O) be a circle, and BC be a chord of (O) such that BC is not a
diameter. Let A be a point on the larger arc BC of (O), and let E, F be the feet
of the perpendiculars from B and C to AC and AB, respectively.
1. Prove that the tangents to (AEF ) at E and F intersect at a fixed point M when
A moves on the larger arc BC of (O).
2. Let T be the intersection of EF and BC, and let H be the orthocenter of ABC.
Prove that TH is perpendicular to AM . I

Solution:
1. Denote by M the midpoint of BC. Since ∠AEH = ∠AFH = 90◦, points
A, H, E and F belong to the same circle and the center of this circle is the
midpoint N of AH. It is easy to check that NE = NH and ME = MB, so
∠MEN = ∠MEB + ∠NEB = ∠MBE + ∠NHE = ∠EAH + ∠AHE = 90◦.
Then ME is the tangent line of (AEF ) at E. By same way, we have that FM is
the tangent line of (AEF ) at F . These imply that the tangent lines of (AEF ) at
E and F meet at the fixed point M .
2. Consider the diameter AA′ of (O). It is easy to see that BHCA′ is a parallelo-
gram and H, M and A′ are collinear.
Suppose that MH ∩ (O) = D 6= A′. Then ∠ADH = ∠ADA′ = 90◦, which means
that D ∈ (AEF ).
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By considering the three radical axis of three circles, (O), (BFEC) and (AEHF ),
we have that AD, EF and BC are concurrent at T , which is the radical center. In
triangle ATM , we have AH ⊥ TM and MH ⊥ AT , hence H is its orthocenter.
From this, we can conclude that TH ⊥ AM .

Problem 4. Find the number of ways one can put numbers 1 or 2 in each cell of
an 8×8 chessboard in such a way that the sum of the numbers in each column and
in each row is an odd number. (Two ways are considered different if the number
in some cell in the first way is different from the number in the cell situated in the
corresponding position in the second way).
Solution:
Consider the leftmost column and lowest row of table; we color all these cells. We
can see that for every way one can fill with numbers the sub-square 7 × 7 that is
not colored, we can choose the numbers for the correspondent colored position at
same column or row. Indeed, if the sum of the 7 numbers is odd, then we put 2 on
the remaining cell; otherwise, we put 1. Finally, the number in the colored corner
cell can be chosen based on the parity of the sum of all number in the square 7×7.
These means that the way to fill in the square 7× 7 uniquely defines the numbers
in the remaining cells. Since we can fill each cell among the 49 cells of the 7 × 7
square by 1 or 2 in any way, the number of ways is 249.
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