THE FIRST JTST FOR JBMO - Saudi Arabia, 2017

Problem 1. Let a, b, c be positive real numbers such that $a b c=1$. Prove the following inequality

$$
\sqrt{2\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)} \geq 1+a+b+c .
$$

Problem 2. Find all prime numbers p such that $\frac{3^{p-1}-1}{p}$ is a perfect square.
Problem 3. On the table, there are 1024 marbles and two students, A and B, alternatively take a positive number of marble(s). The student A goes first, B goes after that and so on. On the first move, A takes k marbles with $1<k<1024$. On the moves after that, A and B are not allowed to take more than k marbles or 0 marbles. The student that takes the last marble(s) from the table wins. Find all values of k the student A should choose to make sure that there is a strategy for him to win the game.

Problem 4. Let $A B C$ be an acute, non isosceles triangle and (O) be its circumcircle (with center O). Denote by G the centroid of the triangle $A B C$, by H the foot of the altitude from A onto the side $B C$ and by I the midpoint of $A H$. The line $I G$ intersects $B C$ at K.

1. Prove that $C K=B H$.
2. The ray ($G H$ intersects (O) at L. Denote by T the circumcenter of the triangle $B H L$. Prove that $A O$ and $B T$ intersect on the circle (O).

Solutions:

Problem 1. Let a, b, c be positive real numbers such that $a b c=1$. Prove the following inequality

$$
\sqrt{2\left(1+a^{2}\right)\left(1+b^{2}\right)\left(1+c^{2}\right)} \geq 1+a+b+c .
$$

Solution:

First, we can see that among three numbers $a-1, b-1, c-1$, there are two numbers that have the same sign. Without loss of generality, we may assume that $a-1$ and $b-1$ have the same sign, which means that $(a-1)(b-1) \geq 0$. By applying Cauchy-Schwarz inequality, we have

$$
\sqrt{2\left(1+c^{2}\right)}=\sqrt{\left(1^{2}+1^{2}\right)\left(1^{2}+c^{2}\right)} \geq 1+c
$$

and

$$
\sqrt{\left(1^{2}+a^{2}\right)\left(1^{2}+b^{2}\right)} \geq 1+a b .
$$

Hence, it is enough to prove that $(1+c)(1+a b) \geq 1+a+b+c$ which is equivalent to $1+a b+c+a b c \geq 1+a+b+c$ or $(a-1)(b-1) \geq 0$.

Problem 2. Find all prime numbers p such that $\frac{3^{p-1}-1}{p}$ is a perfect square.

Solution:

Let p be a prime satisfying the condition of the problem. By assumption, there is a positive integer A such that $3^{p-1}-1=p A^{2}$. It is clear that $p=2$ is a solution. Now, we consider $p>2$. Put $p-1=2 k$; one has $\left(3^{k}-1\right)\left(3^{k}+1\right)=p A^{2}$. Since $\left(3^{k}-1,3^{k}+1\right)=2$, it follows that there are positive integers B and C such that either

$$
3^{k}-1=2 p B^{2}, 3^{k}+1=2 C^{2}
$$

or

$$
3^{k}-1=2 B^{2}, 3^{k}+1=2 p C^{2}
$$

But, the first case cannot hold since $2 C^{2}=3^{k}+1 \equiv 1(\bmod 3)$ means $C^{2} \equiv 2$ (mod 3), which is impossible.
For the second case, if k is odd, then $4 \mid 3^{k}+1=2 p C^{2}$, hence $2 \mid C$ (since p is odd). This means that $3^{k}+1=2 p C^{2}$ is divisible by 8 which contradicts $3^{k}+1 \equiv 4$ (mod 8) (since k is odd). Thus, k must be even.
Put $k=2 m$; then $2 B^{2}=3^{k}-1=\left(3^{m}-1\right)\left(3^{m}+1\right)$. Again, since $\left(3^{m}-1,3^{m}+1\right)=2$, there are positive integers D and E such that either

$$
3^{m}-1=E^{2}, 3^{m}+1=2 D^{2}
$$

or

$$
3^{m}-1=2 E^{2}, 3^{m}+1=D^{2}
$$

As above, the equality $3^{m}+1=2 D^{2}$ leads to a contradiction. Hence, $3^{m}+1=D^{2}$, that is $3^{m}=D^{2}-1=(D-1)(D+1)$. Therefore, there are non-negative integers $t>s$ such that $D-1=3^{s}$ and $D+1=3^{t}$. This gives $2=(D+1)-(D-1)=$ $3^{t}-3^{s}=3^{s}\left(3^{t-s}-1\right)$. This happens if and only if $3^{s}=1$ and $3^{t-s}-1=2$, i.e. $s=0$ and $t=1$, we find that $p=5$ (which satisfies indeed the given condition). In conclusion, $p=2$ and $p=5$.

Problem 3. On the table, there are 1024 marbles and two students, A and B, alternatively take a positive number of marble(s). The student A goes first, B goes after that and so on. On the first move, A takes k marbles with $1<k<1024$. On the moves after that, A and B are not allowed to take more than k marbles or 0 marbles. The student that takes the last marble(s) from the table wins. Find all values of k the student A should choose to make sure that there is a strategy for him to win the game.

Solution:

After the first move, there are $1024-k$ marbles remaining and neither student can take more than k marbles on their turn. We shall prove that if $k+1 \mid 1024-k$ then student A has a winning strategy. Indeed, let $1024-k=m(k+1)$ with $m \in \mathbb{N}$, $m>0$. On each turn, if B chooses x marble(s), then A will choose $k+1-x$ marble(s) on his next turn. Since $x \in\{1,2,3, \ldots, k\}$, then $k+1-x \in\{1,2,3, \ldots, k\}$ which implies that A has always a move available. After m turns of A and m turns of B, student A takes the last marble and wins the game.
If $1024-k$ is not divisible by $k+1$ then we put $1024-k=m(k+1)+n$ with $0<n<k+1$. In this case, student B can take n marbles on his next turn. The number of remaining marbles is $m(k+1)$ then, by applying the same argument as above, student B has a strategy to win the game.
Hence, the condition we have to find is $k+1 \mid 1024-k$ or $k+1 \mid 1025$. Note that the divisors of 1025 are $1,5,25,41,205,1025$, so $k+1 \in\{1,5,25,41,205,1025\}$ and $0<k<1024$. This means that the convenient values of k are 4, 24, 40, 204.

Problem 4. Let $A B C$ be an acute, non isosceles triangle and (O) be its circumcircle (with center O). Denote by G the centroid of the triangle $A B C$, by H the foot of the altitude from A onto the side $B C$ and by I the midpoint of $A H$. The line $I G$ intersects $B C$ at K.

1. Prove that $C K=B H$.
2. The ray $(G H$ intersects (O) at L. Denote by T the circumcenter of the triangle $B H L$. Prove that $A O$ and $B T$ intersect on the circle (O).

Solution:

1. Let M be the midpoint of $B C$; then $G \in A M$ and $\frac{A G}{A M}=\frac{2}{3}$. Take the point $K^{\prime} \in B C$ such that M is the midpoint of $H K^{\prime}$; then $A M$ is the median of triangle $A H K^{\prime}$ and G is its centroid. Then $K^{\prime} G$ is the median of triangle $A H K^{\prime}$ or $K^{\prime} G$ passes through the midpoint of $A H$. This implies that $K \equiv K^{\prime}$ and we have
$B H=C K$.
2. The line passing through A and parallel to $B C$ intersects again the circle (O) at E. Then by the symmetry with respect to perpendicular bisector of $B C$, it is easy to check that $A H K E$ is a rectangle. Since $\frac{G A}{G M}=\frac{A E}{H M}=2$, the points H, G, E and L are collinear.
Then $\angle B L H \equiv \angle B L E \equiv \angle B C E \equiv \angle A B C$ which implies that $\angle A B T=\angle A B C+$ $\angle C B T=\angle B L H+\angle C B T=90^{\circ}$. Thus, if we denote $\{D\}=B T \cap(O)$, then $A D$ is the diameter of (O), hence $O \in A D$. Therefore, $B T$ and $A O$ intersect at a point that belongs to (O).

