
Stars of Mathematics 2019, Juniors’ Competition − Solutions

Problem 1. Determine the positive integers n that satisfy the following prop-
erty: for every positive divisor d of n, d+ 1 is a divisor of n+ 1.

Solution:
We prove that the numbers that have the given property are 1 and the odd prime
numbers. It is clear that all these numbers do indeed have the desired property
and also that 2 does not have it.
Conversely, let us consider a composite number n and prove that it does not have
the given property. If n is composite, then n = ab cu 1 < a ≤ b < n. It follows
that b+1 divides n+1, i.e. there exists c ∈ Z such that c(b+1) = n+1 = ab+1.
We obtain that b divides c − 1. Obviously, c > 1. We deduce that c − 1 ≥ b, i.e.
c ≥ b+1. Then ab+1 = c(b+1) ≥ (b+1)2, which means that ab+1 ≥ b2+2b+1,
leading to a ≥ b+ 2, which contradicts a ≤ b.
In conclusion, no composite number does satisfy the requirements.

Problem 2. Let A and C be two points on a circle C such that (AC) is not a
diameter, and let P be a point of the line segment (AC), other then its midpoint.
Circles c1 and c2 are interiorly tangent to the circle C atA and C, respectively. They
both pass through P and intersect again at Q. The line PQ intersects circle C at
B and D. Circle c1 intersects line segments AB and AD at K and N , respectively,
while circle c2 intersects line segments CB and CD at L and M , respectively. Prove
that:
a) the quadrilateral KLMN is an isosceles trapezoid;
b) Q is the midpoint of the line segment BD.

Thanos Kalogerakis

Solution 1: a) Point B lies on the radical axis, BD, of circles c1 and c2, therefore
BK · BA = BL · BC, which indicates that the quadrilateral AKLC is cyclic. So
is ACMN . It follows that ∠LKB = ∠ACB. The angle between the tangent at
A to the circle c1 (which is also tangent to C ) with line AB subtends arcs AK
of circle c1 and AB of circle C , and therefore ∠ANK = ∠ADB. We obtain that
NK ‖ BD and, similarly, ML ‖ BD. (This fact also follows from the homotheties
that transform circles c1, and c2, respectively, into C .) Finally, ∠NKL = 180◦ −
∠AKN −∠LKB = 180◦−∠ABD−∠LKB = 180◦−∠ACD−∠ACB = ∠BAD.
Similarly, ∠MNK = ∠BAD, which leads to the conclusion. Alternatively, one
could have noticed that line segments ML, PQ and [NK] share the same perpen-
dicular bisector.
b) The radical axes of circles c1, c2, C (one for each pair of circles), i.e. the tangent
line to C at A, the tangent line to C at C and the line BD are not all parallel,
therefore they are concurrent in the radical center. Diagonal BD is then a symme-
dian of triangle ABC, which means that quadrilateral ABCD is harmonic. (One
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can also use this fact to give a different proof to a).)
As NPQK is an isosceles trapezoid, it follows that ∠NAP = ^QAK, which means
that rays (AP and (AQ are isogonal with respect to angle ∠DAB. But ABCD
being harmonic, AP is a symmedian of triangle DAB, therefore AQ, which is its
isogonal, is the median.

Another idea:
One could use a property of harmonic quadrilaterals that was put into evidence by
the Danube Mathematical Competition from the same year:
If R is the midpoint of diagonal BD of a harmonic quadrilateral ABCD, then
∠ARD = ∠CRD.
One proves that R is the only point on the line segment BD that has the property
from above. Next, one proves that point Q does have the property, which makes it
the midpoint of BD.

Problem 3. On the board are written initially three consecutive positive integers,
n− 1, n, n + 1. A move consists of choosing two numbers written on the board a
and b, and replacing them with 2a−b and 2b−a. For what values of n is it possible
to obtain, after a succession of such moves, that two of the numbers written on the
board are equal to 0?

Andrei Eckstein

Solution 1: (Alexandru Mihalcu)
We prove that we can obtain two 0-s on the board if and only if n is a power of 3.
As the sum of the numbers written on the board stays the same, we must obtain
on the board the numbers (0, 0, 3n). If p 6= 3 is a prime divisor of n, then, in the
final configuration, all the numbers are divisible by p. But if p | 2a− b, p | 2b− a
then p |

(
2(2a − b) + (2b − a)

)
, i.e. p | 3a. As (p, 3) = 1, it follows that p | a

and then p | b. From the above, we deduce that if in the end all the numbers are
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divisible by a prime p 6= 3, then they were always divisible by that prime. Since
g.c.d.(n− 1, n, n + 1) = 1, it follows that one cannot obtain two 0-s on the board
if n has prime divisors other than 3.
We are left with the case when n = 3k, cu k ∈ N ∪ {0}. For k = 0, starting from
(0, 1, 2), it is easy to get to (0, 0, 3). Assume k ≥ 1. Choosing at the first move
a = n− 1, b = n+1, we obtain on the board numbers n− 3, n, n+3, all multiples
of 3. They can be written as 3(m − 1), 3m, 3(m + 1) and the subsequent moves
function as if the numbers written on the board were m−1,m,m+1. (After j ≤ k
moves, on the board will be the numbers 3k − 3j, 3k, 3k + 3j. After move no. k
we get 0, 3k, 2 ·3k. Choosing a = 3k and b = 2 ·3k we obtain on the board 0, 0, 3k+1.

Solution 2: (Andrei Eckstein)
We say that a triple (a, b, c) is solvable if, starting with the numbers a, b, c written
on the board, one can obtain, after a succession of moves, two 0-s on the board.
Then (a, b, c) is solvable if and only if (ta, tb, tc), t ∈ N, is solvable (one performs
tha same moves, only the "unit of measurement" changes). (*)
We prove that the triple (n− 1, n, n+1) is solvable if and only if n is a power of 3.
Let us first prove that if n = 3m, m ∈ N ∪ {0}, then the triple (n− 1, n, n + 1) is
solvable. We prove the statement by induction after m ≥ 0.
For m = 0: he triple (0, 1, 2) is solvable by a single move, choosing a = 1, b = 2.
Assuming the statement to be true for m, let us prove it for m + 1. Having on
the board the triple (3m+1 − 1, 3m+1, 3m+1 + 1), we choose a = 3m+1 − 1 and
b = 3m+1 + 1 and we get to the triple (3m+1 − 3, 3m+1, 3m+1 + 3). According to the
remark (*), this triple is solvable because the inductive hypothesis tells us that the
triple (3m − 1, 3m, 3m + 1) is solvable.
Let us notice that the sum of the numbers written on the board does not change
while performing a move. It remains 3n, which is a multiple of 3. After the first
move, all the numbers become equal modulo 3 because 2a− b ≡ −a− b ≡ 2b− a
(mod 3). If, after the first move, they became all congruent to 1 or 2 mod 3, they
will remain that way, so they can not become 0. Thus, it is mandatory that the first
move makes all the numbers on the board multiples of 3. Also, if (a, b, c) is solvable,
i.e. can be transformed into (0, 0, a + b + c) through a succession of moves, then,

before the last move, the numbers written on the board have to be 0,
a+ b+ c

3

and
2(a+ b+ c)

3
, which shows that it is necessary to have 3 | a+ b+ c.

If n = 3k + 1, then the last move must be (3k, 3k + 1, 3k + 2) 7→ (3k, 3k, 3k + 3).
If k = 0, we are done (n = 1 is a power of 3); otherwise, this triple is solvable if
and only if (k, k, k + 1) is solvable. But this triple is not solvable because the sum
k + k + (k + 1) is not divisible by 3.
If n = 3k+2 then the first move must be (3k+1, 3k+2, 3k+3) 7→ (3k, 3k+3, 3k+3).
This triple is solvable if and only if (k, k + 1, k + 1) is solvable. But this triple is
not solvable because the sum k + (k + 1) + (k + 1) is not divisible by 3.
If n = 3k, the first move must be (3k − 1, 3k, 3k + 1) 7→ (3k − 3, 3k, 3k + 3). This
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second position is solvable if and only if (k−1, k, k+1) is solvable. As n 6= 0, there
exist u, v ∈ N such that n = 3u · v, (v, 3) = 1. Repeating this reasoning, after u
moves we get to the triple (v − 1, v, v + 1). We have seen that the only triple of
this form that is solvable is (0, 1, 2), therefore it is necessary for n to be a power of 3.

Problem 4. Prove that, if positive real numbers a1, a2, . . . , an have the product 1,
then(

a1
a2

)n−1

+

(
a2
a3

)n−1

+ . . .+

(
an−1

an

)n−1

+

(
an
a1

)n−1

≥ a21 + a22 + . . .+ a2n.

Andrei Eckstein

Solution: We prove that, for all a1, a2, . . . , an > 0, the following inequality holds(
a1
a2

)n−1

+

(
a2
a3

)n−1

+ . . .+

(
an−1

an

)n−1

+

(
an
a1

)n−1

≥ a21 + a22 + . . .+ a2n
n
√
a21a

2
2 . . . a

2
n

.

This inequality is obtained by adding the inequality below with its analogues ob-
tained by cyclic permutation of the variables:

(n− 1) ·
(
a1
a2

)n−1

+ (n− 2) ·
(
a2
a3

)n−1

+ · · ·+
(
an−1

an

)n−1
medii

≥

n(n− 1)

2
·
((a1

a2

)n−1(a2
a3

)n−2

· . . . ·
(an−1

an

)) 2
n

=
n(n− 1)

2

(
an1

a1a2a3 . . . an

) 2
n

.

Equality holds if all the numbers are equal to 1.

Remarks: For n = 3 this inequality has been published by Šefket Arslanagić in
Elemente der Mathematik; for n = 4 it appears, in a weaker form, in Mathscope,
pb 321.1 (author Lê Thanh Hâi)).
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