Mathematical Danube Competition

Juniors October 26, 2019

Problem 1. Find the integer solutions of the equation

$$x^2(x^2+1) = 21^y - 1.$$

Problem 2. Prove that for any real numbers $a_1, a_2, \ldots, a_n, n \in \mathbb{N}$, there exists a real number x such that the numbers $x + a_1, x + a_2, \ldots, x + a_n$ are all irrational.

Problem 3. One a line, there are 51 positive integers whose sum is 100. Prove that, for all positive integers $k, 1 \le k \le 99$, one can find either a succession of numbers on the line whose sum is k, or a succession of numbers whose sum is 100-k.

Problem 4. Consider a cyclic quadrilateral ABCD and let M and N be the midpoints of the diagonals AC and BD, respectively. If $\angle AMB = \angle AMD$, prove that $\angle ANB = \angle BNC$.