Mathematical Danube Competition

Juniors

October 26, 2019
Problem 1. Find the integer solutions of the equation

$$
x^{2}\left(x^{2}+1\right)=21^{y}-1 .
$$

Problem 2. Prove that for any real numbers $a_{1}, a_{2}, \ldots, a_{n}, n \in \mathbb{N}$, there exists a real number x such that the numbers $x+a_{1}, x+a_{2}, \ldots, x+a_{n}$ are all irrational.

Problem 3. One a line, there are 51 positive integers whose sum is 100 . Prove that, for all positive integers $k, 1 \leq k \leq 99$, one can find either a succession of numbers on the line whose sum is k, or a succession of numbers whose sum is $100-k$.

Problem 4. Consider a cyclic quadrilateral $A B C D$ and let M and N be the midpoints of the diagonals $A C$ and $B D$, respectively. If $\angle A M B=\angle A M D$, prove that $\angle A N B=\angle B N C$.

