

## CYPRUS MATHEMATICAL SOCIETY B' SELECTION COMPETITION FOR UNDER 15 1/2 YEARS OLD «Euclidis»

Date: 10/02/2019

**Time duration: 10:00-14:30** 

## **Instructions:**

- 1. Solve all the problems showing your work.
- 2. Write with blue or black ink. (You may use pencil for figures)
- 3. Correction fluid (Tipp-ex) is not permitted.
- 4. Calculators are not permitted.

**Problem 1.** Let p be a prime number and let  $\beta$  be an integer such that:

- The number  $2019 + \beta$  is a multiple of p
- The number  $2019^3 + \beta^3$  is a multiple of  $p^2$
- The number  $p^2$  does not divide  $2019 + \beta$ .

Prove that the number  $2019^3 + \beta^3$  is a multiple of  $p^3$ 

**Problem 2:** Let  $\mu, \nu$  be positive integers such that the number  $A = \mu^3 + \nu^3 - (\mu + \nu)^2$  is also a positive integer.

(a) Prove that  $A = (\mu + \nu)(\mu^2 + \nu^2 - \mu\nu - \mu - \nu)$ 

( $\beta$ ) Determine the minimum possible value of *A*.

**Problem 3:** Let  $\triangle AB\Gamma$  be an isosceles triangle with  $\Gamma A = \Gamma B$  and  $\angle A\Gamma B > 90^\circ$ . Let *E* be the point of intersection of the perpendicular bisector of  $A\Gamma$  with the internal bisector of angle  $\angle B$  of the triangle  $\triangle AB\Gamma$ . The circle with diameter *AE* meets the line  $A\Gamma$  at *Z*. If the tangent to the circle at point *Z* meets line *AB* at  $\Theta$ , prove that  $AZ = A\Theta$ .

**<u>Problem 4</u>**: In a meeting of 100 people, every person hates exactly one other person. (Hating is not necessarily mutual.)

( $\alpha$ ) Prove that we can choose 34 people such that none of them hates another one of them.

 $(\beta)$  Find an example for which however we choose 35 people, one of those will hate another one of those.