Juniors

Problem 1

Find all the pairs (n, m) of positive integers which fulfil simultaneously the conditions:
i) the number n is composite;
ii) if the numbers $d_{1}, d_{2}, \ldots, d_{k}, k \in \mathbb{N}^{*}$ are all the proper divisors of n, then the numbers $d_{1}+1, d_{2}+1, \ldots, d_{k}+1$ are all the proper divisors of m.

Problem 2
Let $A B C$ be a triangle such that in its interior there exists a point D with $\angle D A C=\angle D C A=30^{\circ}$ and $\angle D B A=60^{\circ}$. Denote E the midpoint of the segment $B C$, and take F on the segment $A C$ so that $A F=2 F C$. Prove that $D E \perp E F$.

Problem 3

Find all the positive integers n with the property:

$$
\begin{aligned}
& \text { there exists an integer } k \geqslant 2 \text { and the positive rational numbers } \\
& a_{1}, a_{2}, \ldots, a_{k} \text { such that } a_{1}+a_{2}+\ldots+a_{k}=a_{1} a_{2} \ldots a_{k}=n \text {. }
\end{aligned}
$$

Problem 4

Let M be the set of positive odd integers. For every positive integer n, denote $A(n)$ the number of the subsets of M whose sum of elements equals n. For instance, $A(9)=2$, because there are exactly two subsets of M with the sum of their elements equal to 9 : $\{9\}$ and $\{1,3,5\}$.
a) Prove that $A(n) \leqslant A(n+1)$ for every integer $n \geqslant 2$.
b) Find all the integers $n \geqslant 2$ such that $A(n)=A(n+1)$.

