Solutions

Problem 1. Find all the pairs (n, m) of positive integers which fulfil simultaneously the conditions:

i) the number n is composite;

ii) if the numbers $d_1, d_2, \ldots, d_k, k \in \mathbb{N}^*$ are all the proper divisors of n, then the numbers $d_1 + 1, d_2 + 1, \ldots, d_k + 1$ are all the proper divisors of m.

Solution. Answer: $(n, m) \in \{(4, 9), (8, 15)\}.$

If k = 1, then $n = p^2$, where p is a prime, and $m = (p+1)^2$, where p+1 is a prime. We get p = 2, q = 3, which yields the pair (n, m) = (4, 9).

If $k \ge 2$, denote $d_1 < d_2 < \ldots < d_k$ all the proper divisors of n. Then

$$n = d_1 d_k = d_2 d_{k-1}$$

and

$$m = (d_1 + 1)(d_k + 1) = (d_2 + 1)(d_{k-1} + 1),$$

whence $d_1 + d_k = d_2 + d_{k-1}$, that is $d_1 + \frac{n}{d_1} = d_2 + \frac{n}{d_2}$, which is equivalent to

$$(d_1 - d_2) \left(1 - \frac{n}{d_1 d_2} \right) = 0.$$

This shows that $n = d_1 d_2$, therefore k = 2. The possible cases are:

A) $n = d_1 d_2$, where d_1 and d_2 are different primes, hence $m = (d_1 + 1)(d_2 + 1)$. Since $d_1 + 1$ and $d_2 + 1$ must be different primes and $d_2 + 1$ is even, there is no solution in this case.

B) $n = d_1^3$, where d_1 is a prime, so $m = (d_1 + 1)(d_1^2 + 1)$ and $d_1 + 1$, $d_1^2 + 1$ are primes. Then $d_1 = 2$ and we get the pair (n, m) = (8, 15).

Problem 2. Let ABC be a triangle such that in its interior there exists a point D with $\angle DAC = \angle DCA = 30^{\circ}$ and $\angle DBA = 60^{\circ}$. Denote E the midpoint of the segment BC, and take F on the segment AC so that AF = 2FC. Prove that $DE \perp EF$.

Solution. Let G be the midpoint of the segment AF and M be the midpoint of the segment AC. Then M is the midpoint of the segment GF and $DM \perp AC$.

Since $d(F, DM) = MF = \frac{GF}{2} = \frac{CF}{2} = d(F, DC)$, the ray (*DF* is the bisector of the angle *MDC*. Then the triangle *DFG* is equilateral.

Since $\angle DGF = \angle DBA = 60^{\circ}$, the quadrilateral ABDG is cyclic. Therefore, $\angle DBG = \angle DAG = 30^{\circ}$ and $\angle ABG = GDA = 30^{\circ}$.

The segment EF is a midline of the triangle CBG, and the segment EM is a midline of the triangle ABC. Hence $EF \parallel BG$ and $EM \parallel AB$, so $\angle MEF = \angle ABG = 30^{\circ}$.

Since $\angle MDF = 30^\circ$, the quadilateral DMFE is cyclic, so $\angle DEF = \angle DMF = 90^\circ$.

Problem 3. Find all the positive integers n with the property:

there exists an integer $k \ge 2$ and the positive rational numbers a_1, a_2, \ldots, a_k such that $a_1 + a_2 + \ldots + a_k = a_1 a_2 \ldots a_k = n$.

Solution. Answer: $n \in \mathbb{N}^* \setminus \{1, 2, 3, 5\}$.

All the composite numbers are good: if n = pq, p > 1, q > 1, then we can take $a_1 = p$, $a_2 = q$ and $a_3 = a_4 \ldots = a_k = 1$, where k = n - (p+q).

All the primes $n \ge 11$ are good: we take $a_1 = \frac{n}{2}, a_2 = \frac{1}{2}, a_3 = 4$ and $a_4 = a_5 = \dots = a_k = 1$, where $k = \frac{n-3}{2}$.

The value n = 7 is good: we take k = 3 and $a_1 = \frac{9}{2}, a_2 = \frac{7}{6}, a_3 = \frac{4}{3}$.

Suppose now that $n \leq 5, n \neq 4$, fulfils the condition. Then the AM-GM inequality yields $\frac{a_1+a_2+\ldots+a_k}{k} \geq \sqrt[k]{a_1a_2\ldots a_k}$, that is $n^{k-1} \geq k^k$.

- Clearly n = 1 or n = 2 is impossible.
- If n = 3, then $3^{k-1} < k^k$, for every $k \ge 2$, so this case is also impossible.
- If n = 5, then:
- for every $k \ge 3, 5^{k-1} < k^k$;
- for k = 2, $a_1 + a_2 = a_1 a_2 = 5$ yields irational a_1, a_2 .

Problem 4. Let M be the set of positive odd integers. For every positive integer n, denote A(n) the number of the subsets of M whose sum of elements equals n. For instance, A(9) = 2, because there are exactly two subsets of M with the sum of their elements equal to 9: $\{9\}$ and $\{1, 3, 5\}$.

a) Prove that $A(n) \leq A(n+1)$ for every integer $n \geq 2$.

b) Find all the integers $n \ge 2$ such that A(n) = A(n+1).

Solution. We will call n-set a subset of M whose sum of elements is n.

a) The following procedure \mathcal{P} associates to each n-set a (n + 1)-set, so that every two different n-sets have different corresponding (n + 1)-sets:

- if a *n*-set *S* does not contain 1, then $S \cup \{1\}$ is a (n+1)-set;

- if a *n*-set *S* contains 1, then we replace in *S* its largest element 2k - 1 ($k \in \mathbb{N}$, $k \ge 2$) and 1 with 2k + 1.

b) For $n \ge 3$, \mathcal{P} leads (starting from the *n*-sets) to all the (n + 1)-sets which contain 1 and to the (n + 1)-sets which does not contain 1 and, if their largest element is 2k + 1, then 2k - 1 is not an element of the set.

If n = 4k, the (n+1)-set $\{5, 2k-3, 2k-1\}$ is not obtained from a *n*-set using \mathcal{P} , so A(n) < A(n+1) for every n = 4k with $2k-3 \ge 7$, that is $n \ge 20$.

If n = 4k - 1, the (n + 1)-set $\{2k - 1, 2k + 1\}$ is not obtained from a *n*-set using \mathcal{P} for $k \ge 2$, that is $n \ge 7$.

If n = 4k + 1, the (n + 1)-set $\{3, 7, 2k - 5, 2k - 3\}$, $k \ge 7$ is not obtained from a *n*-set using \mathcal{P} , so A(n) < A(n + 1) for every n = 4k + 1, $n \ge 29$.

If n = 4k + 2, then $\{3, 2k - 1, 2k + 1\}$, $k \ge 3$, is a (n + 1)-set which is not obtained from a *n*-set using \mathcal{P} , so A(n) < A(n + 1) for every $n = 4k + 2 \ge 14$.

So, A(n) = A(n+1) is possible only if n = 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 16, 17, 21, 25. We get

$$A(2) = 0$$

$$A(3) = 1 = A(4) = A(5) = A(6) = A(7)$$

$$A(8) = A(9) = 2 = A(10) = A(11)$$

$$A(12) = A(13) = A(14) = 3$$

$$A(16) = A(17) = A(18) = 5$$

$$A(21) = A(22) = 8$$

$$A(25) = A(26) = 12,$$

and the above list answers the question.