Solutions

Problem 1. Find all the pairs (n, m) of positive integers which fulfil simultaneously the conditions:
i) the number n is composite;
ii) if the numbers $d_{1}, d_{2}, \ldots, d_{k}, k \in \mathbb{N}^{*}$ are all the proper divisors of n, then the numbers $d_{1}+1, d_{2}+1, \ldots, d_{k}+1$ are all the proper divisors of m.

Solution. Answer: $(n, m) \in\{(4,9),(8,15)\}$.
If $k=1$, then $n=p^{2}$, where p is a prime, and $m=(p+1)^{2}$, where $p+1$ is a prime. We get $p=2, q=3$, which yields the pair $(n, m)=(4,9)$.

If $k \geqslant 2$, denote $d_{1}<d_{2}<\ldots<d_{k}$ all the proper divisors of n. Then

$$
n=d_{1} d_{k}=d_{2} d_{k-1}
$$

and

$$
m=\left(d_{1}+1\right)\left(d_{k}+1\right)=\left(d_{2}+1\right)\left(d_{k-1}+1\right)
$$

whence $d_{1}+d_{k}=d_{2}+d_{k-1}$, that is $d_{1}+\frac{n}{d_{1}}=d_{2}+\frac{n}{d_{2}}$, which is equivalent to

$$
\left(d_{1}-d_{2}\right)\left(1-\frac{n}{d_{1} d_{2}}\right)=0
$$

This shows that $n=d_{1} d_{2}$, therefore $k=2$. The possible cases are:
A) $n=d_{1} d_{2}$, where d_{1} and d_{2} are different primes, hence $m=\left(d_{1}+1\right)\left(d_{2}+1\right)$. Since $d_{1}+1$ and $d_{2}+1$ must be different primes and $d_{2}+1$ is even, there is no solution in this case.
B) $n=d_{1}^{3}$, where d_{1} is a prime, so $m=\left(d_{1}+1\right)\left(d_{1}^{2}+1\right)$ and $d_{1}+1, d_{1}^{2}+1$ are primes. Then $d_{1}=2$ and we get the pair $(n, m)=(8,15)$.

Problem 2. Let $A B C$ be a triangle such that in its interior there exists a point D with $\angle D A C=\angle D C A=30^{\circ}$ and $\angle D B A=60^{\circ}$. Denote E the midpoint of the segment $B C$, and take F on the segment $A C$ so that $A F=2 F C$. Prove that $D E \perp E F$.

Solution. Let G be the midpoint of the segment $A F$ and M be the midpoint of the segment $A C$. Then M is the midpoint of the segment $G F$ and $D M \perp A C$.

Since $d(F, D M)=M F=\frac{G F}{2}=\frac{C F}{2}=$ $d(F, D C)$, the ray ($D F$ is the bisector of the angle $M D C$. Then the triangle $D F G$ is equilateral.

Since $\angle D G F=\angle D B A=60^{\circ}$, the quadrilateral $A B D G$ is cyclic. Therefore, $\angle D B G=$ $\angle D A G=30^{\circ}$ and $\angle A B G=G D A=30^{\circ}$.

The segment $E F$ is a midline of the triangle $C B G$, and the segment $E M$ is a midline of the triangle $A B C$. Hence $E F \| B G$ and B
 $E M \| A B$, so $\angle M E F=\angle A B G=30^{\circ}$.

Since $\angle M D F=30^{\circ}$, the quadilateral $D M F E$ is cyclic, so $\angle D E F=\angle D M F=$ 90°.

Problem 3. Find all the positive integers n with the property:
there exists an integer $k \geqslant 2$ and the positive rational numbers $a_{1}, a_{2}, \ldots, a_{k}$ such that $a_{1}+a_{2}+\ldots+a_{k}=a_{1} a_{2} \ldots a_{k}=n$.

Solution. Answer: $n \in \mathbb{N}^{*} \backslash\{1,2,3,5\}$.
All the composite numbers are good: if $n=p q, p>1, q>1$, then we can take $a_{1}=p, a_{2}=q$ and $a_{3}=a_{4} \ldots=a_{k}=1$, where $k=n-(p+q)$.

All the primes $n \geqslant 11$ are good: we take $a_{1}=\frac{n}{2}, a_{2}=\frac{1}{2}, a_{3}=4$ and $a_{4}=a_{5}=$ $\ldots=a_{k}=1$, where $k=\frac{n-3}{2}$.

The value $n=7$ is good: we take $k=3$ and $a_{1}=\frac{9}{2}, a_{2}=\frac{7}{6}, a_{3}=\frac{4}{3}$.
Suppose now that $n \leqslant 5, n \neq 4$, fulfils the condition. Then the AM-GM ineqality yields $\frac{a_{1}+a_{2}+\ldots+a_{k}}{k} \geqslant \sqrt[k]{a_{1} a_{2} \ldots a_{k}}$, that is $n^{k-1} \geqslant k^{k}$.

Clearly $n=1$ or $n=2$ is impossible.
If $n=3$, then $3^{k-1}<k^{k}$, for every $k \geqslant 2$, so this case is also impossible.
If $n=5$, then:

- for every $k \geqslant 3,5^{k-1}<k^{k}$;
- for $k=2, a_{1}+a_{2}=a_{1} a_{2}=5$ yields irational a_{1}, a_{2}.

Problem 4. Let M be the set of positive odd integers. For every positive integer n, denote $A(n)$ the number of the subsets of M whose sum of elements equals n. For instance, $A(9)=2$, because there are exactly two subsets of M with the sum of their elements equal to 9 : $\{9\}$ and $\{1,3,5\}$.
a) Prove that $A(n) \leqslant A(n+1)$ for every integer $n \geqslant 2$.
b) Find all the integers $n \geqslant 2$ such that $A(n)=A(n+1)$.

Solution. We will call n-set a subset of M whose sum of elements is n.
a) The following procedure \mathcal{P} associates to each n-set a $(n+1)$-set, so that every two different n-sets have different corresponding $(n+1)$-sets:

- if a n-set S does not contain 1, then $S \cup\{1\}$ is a $(n+1)$-set;
- if a n-set S contains 1 , then we replace in S its largest element $2 k-1(k \in \mathbb{N}$, $k \geqslant 2)$ and 1 with $2 k+1$.
b) For $n \geqslant 3, \mathcal{P}$ leads (starting from the n-sets) to all the $(n+1)$-sets which contain 1 and to the $(n+1)$-sets which does not contain 1 and, if their largest element is $2 k+1$, then $2 k-1$ is not an element of the set.

If $n=4 k$, the $(n+1)-$ set $\{5,2 k-3,2 k-1\}$ is not obtained from a n-set using \mathcal{P}, so $A(n)<A(n+1)$ for every $n=4 k$ with $2 k-3 \geqslant 7$, that is $n \geqslant 20$.

If $n=4 k-1$, the $(n+1)-$ set $\{2 k-1,2 k+1\}$ is not obtained from a n-set using \mathcal{P} for $k \geqslant 2$, that is $n \geqslant 7$.

If $n=4 k+1$, the $(n+1)-$ set $\{3,7,2 k-5,2 k-3\}, k \geqslant 7$ is not obtained from a n-set using \mathcal{P}, so $A(n)<A(n+1)$ for every $n=4 k+1, n \geqslant 29$.

If $n=4 k+2$, then $\{3,2 k-1,2 k+1\}, k \geqslant 3$, is a $(n+1)$-set which is not obtained from a n-set using \mathcal{P}, so $A(n)<A(n+1)$ for every $n=4 k+2 \geqslant 14$.

So, $A(n)=A(n+1)$ is possible only if $n=2,3,4,5,6,8,9,10,12,13,16,17,21,25$.
We get

$$
\begin{gathered}
A(2)=0 \\
A(3)=1=A(4)=A(5)=A(6)=A(7) \\
A(8)=A(9)=2=A(10)=A(11) \\
A(12)=A(13)=A(14)=3 \\
A(16)=A(17)=A(18)=5 \\
A(21)=A(22)=8 \\
A(25)=A(26)=12,
\end{gathered}
$$

and the above list answers the question.

