
Solutions

Problem 1. Find all the pairs (n,m) of positive integers which fulfil simulta-
neously the conditions:

i) the number n is composite;
ii) if the numbers d1, d2, . . . , dk, k ∈ N∗ are all the proper divisors of n, then the

numbers d1 + 1, d2 + 1, . . . , dk + 1 are all the proper divisors of m.
Solution. Answer : (n,m) ∈ {(4, 9), (8, 15)}.
If k = 1, then n = p2, where p is a prime, and m = (p + 1)2, where p + 1 is a

prime. We get p = 2, q = 3, which yields the pair (n,m) = (4, 9).
If k > 2, denote d1 < d2 < . . . < dk all the proper divisors of n. Then

n = d1dk = d2dk−1

and

m = (d1 + 1)(dk + 1) = (d2 + 1)(dk−1 + 1),

whence d1 + dk = d2 + dk−1, that is d1 + n
d1

= d2 + n
d2

, which is equivalent to

(d1 − d2)
(

1− n

d1d2

)
= 0.

This shows that n = d1d2, therefore k = 2. The possible cases are:
A) n = d1d2, where d1 and d2 are different primes, hence m = (d1 + 1)(d2 + 1).

Since d1 + 1 and d2 + 1 must be different primes and d2 + 1 is even, there is no
solution in this case.

B) n = d31, where d1 is a prime, so m = (d1 + 1)(d21 + 1) and d1 + 1, d21 + 1 are
primes. Then d1 = 2 and we get the pair (n,m) = (8, 15).

Problem 2. Let ABC be a triangle such that in its interior there exists a point
D with ∠DAC = ∠DCA = 30◦ and ∠DBA = 60◦. Denote E the midpoint of
the segment BC, and take F on the segment AC so that AF = 2FC. Prove that
DE ⊥ EF .

Solution. Let G be the midpoint of the segment AF and M be the midpoint
of the segment AC. Then M is the midpoint of the segment GF and DM ⊥ AC.

Since d(F,DM) = MF = GF
2 = CF

2 =
d(F,DC), the ray (DF is the bisector of the
angle MDC. Then the triangle DFG is equi-
lateral.

Since ∠DGF = ∠DBA = 60◦, the quadri-
lateral ABDG is cyclic. Therefore, ∠DBG =
∠DAG = 30◦ and ∠ABG = GDA = 30◦.

The segment EF is a midline of the trian-
gle CBG, and the segment EM is a midline
of the triangle ABC. Hence EF ‖ BG and
EM ‖ AB, so ∠MEF = ∠ABG = 30◦.
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Since ∠MDF = 30◦, the quadilateral DMFE is cyclic, so ∠DEF = ∠DMF =
90◦.

Problem 3. Find all the positive integers n with the property:

there exists an integer k > 2 and the positive rational numbers
a1, a2, . . . , ak such that a1 + a2 + . . . + ak = a1a2 . . . ak = n.



Solution. Answer : n ∈ N∗ \ {1, 2, 3, 5}.
All the composite numbers are good: if n = pq, p > 1, q > 1, then we can take

a1 = p, a2 = q and a3 = a4 . . . = ak = 1, where k = n− (p + q).
All the primes n > 11 are good: we take a1 = n

2 , a2 = 1
2 , a3 = 4 and a4 = a5 =

. . . = ak = 1, where k = n−3
2 .

The value n = 7 is good: we take k = 3 and a1 = 9
2 , a2 = 7

6 , a3 = 4
3 .

Suppose now that n 6 5, n 6= 4, fulfils the condition. Then the AM-GM ineqality
yields a1+a2+...+ak

k > k
√
a1a2 . . . ak, that is nk−1 > kk.

Clearly n = 1 or n = 2 is impossible.
If n = 3, then 3k−1 < kk, for every k > 2, so this case is also impossible.
If n = 5, then:
- for every k > 3, 5k−1 < kk;
- for k = 2, a1 + a2 = a1a2 = 5 yields irational a1, a2.

Problem 4. Let M be the set of positive odd integers. For every positive integer
n, denote A(n) the number of the subsets of M whose sum of elements equals n.
For instance, A(9) = 2, because there are exactly two subsets of M with the sum
of their elements equal to 9: {9} and {1, 3, 5}.

a) Prove that A(n) 6 A(n + 1) for every integer n > 2.
b) Find all the integers n > 2 such that A(n) = A(n + 1).
Solution. We will call n−set a subset of M whose sum of elements is n.
a) The following procedure P associates to each n−set a (n + 1)−set, so that

every two different n−sets have different corresponding (n + 1)−sets:
- if a n−set S does not contain 1, then S ∪ {1} is a (n + 1)−set;
- if a n−set S contains 1, then we replace in S its largest element 2k− 1 (k ∈ N,

k > 2) and 1 with 2k + 1.
b) For n > 3, P leads (starting from the n−sets) to all the (n + 1)−sets which

contain 1 and to the (n + 1)−sets which does not contain 1 and, if their largest
element is 2k + 1, then 2k − 1 is not an element of the set.

If n = 4k, the (n+ 1)−set {5, 2k− 3, 2k− 1} is not obtained from a n−set using
P, so A(n) < A(n + 1) for every n = 4k with 2k − 3 > 7, that is n > 20.

If n = 4k − 1, the (n + 1)−set {2k − 1, 2k + 1} is not obtained from a n−set
using P for k > 2, that is n > 7.

If n = 4k + 1, the (n + 1)−set {3, 7, 2k − 5, 2k − 3}, k > 7 is not obtained from
a n−set using P, so A(n) < A(n + 1) for every n = 4k + 1, n > 29.

If n = 4k + 2, then {3, 2k − 1, 2k + 1}, k > 3, is a (n + 1)−set which is not
obtained from a n−set using P, so A(n) < A(n + 1) for every n = 4k + 2 > 14.

So, A(n) = A(n+1) is possible only if n = 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 16, 17, 21, 25.
We get

A(2) = 0

A(3) = 1 = A(4) = A(5) = A(6) = A(7)

A(8) = A(9) = 2 = A(10) = A(11)

A(12) = A(13) = A(14) = 3

A(16) = A(17) = A(18) = 5

A(21) = A(22) = 8

A(25) = A(26) = 12,

and the above list answers the question.


