
Stars of Mathematics 2017, junior competition

Problem 1. How many of the first 2017 positive integers can be uniquely represented
as 2a + 2b + 2c, with a, b, c non negative integers? (Two representations that only differ
by the order of the terms are considered identical.)

Andrei Eckstein

Solution.
If a number can be represented as a sum of three, not necessarily distinct, powers of 2, re-
grouping the equal terms (if such terms exist), one obtains a sum of at most three distinct
powers of 2, hence the base 2 representation of such a number has at most three digits
equal to 1. Convenient numbers are those whose base 2 representation have three digits
equal to 1, then the numbers of the form 2a+1 = 2a−1+2a−1+1 with a ∈ N (numbers 2a+2b

with a > b ≥ 1 are not convenient because 2a + 2b = 2a−1 + 2a−1 + 2b = 2b−1 + 2b−1 + 2a);
finally, the numbers 2c = 2c−1 + 2c−1 + 2c−2 are also convenient if c ≥ 2.
Let us count first the convenient numbers that are less than 2048. The base 2 represen-
tation of these numbers has at most 11 digits 2. There are C3

11 = 165 numbers less than
2048 that can be written as a sum of three distinct powers of 2. There are 10 numbers of
the form 2a + 1, (1 ≤ a ≤ 10) and 9 of the form 2a, (2 ≤ a ≤ 10), hence 184 numbers in
total.
The numbers from 2018 to 2047 are larger than 210+29+28, hence their base 2 representa-
tion has more than three digits equal to 1, therefore none of these numbers is convenient.
In conclusion, there are 184 convenient numbers among the first 2017 positive integers.

Problem 2. Let x, y, z be three positive real numbers such that x2 + y2 + z2 + 3 =
2(xy + yz + zx). Prove that

√
xy +

√
yz +

√
zx ≥ 3.

When does the equality hold?

Vlad Robu

Solution 1.
Using the given condition, the inequality can be written equivalently

√
xy+

√
yz+

√
zx ≥√

3(2xy + 2yz + 2zx− x2 − y2 − z2) or, denoting
√
x = a,

√
y = b,

√
z = c, we have

(ab + bc + ca)2 ≥ 3(2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4). We thus have to prove that
3(a4 + b4 + c4) + 2(a2bc + b2ca + c2ab) ≥ 5(a2b2 + b2c2 + c2a2).
The following inequality is well known (Schur):
a2(a− b)(a− c) + b2(b− c)(b− a) + c2(c− a)(c− b) ≥ 0.
Multiplied by 2, it becomes 2(a4 + b4 + c4) + 2(a2bc + b2ca + c2ab) ≥ 2(a3b + a3c + b3a +
b3c + c3a + c3b).
But 2(a3b + a3c + b3a + b3c + c3a + c3b) = 2ab(a2 + b2) + 2bc(b2 + c2) + 2ca(c2 + a2) ≥
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4a2b2 + 4b2c2 + 4c2a2 and a4 + b4 + c4 ≥ a2b2 + b2c2 + c2a2. Adding these three inequalities
given the desired one.
Equality holds if and only if x = y = z = 1.
Solution 2.
Rewrite x2 + y2 + z2 + 3 = 2(xy + yz + zx) as

(
√
x +
√
y +
√
z)(
√
x +
√
y −
√
z)(
√
x +
√
z −√y)(

√
y +
√
z −
√
x) = 3.

Let
√
x +
√
y −
√
z = 2a,

√
z +
√
y −
√
x = 2b,

√
x +
√
z −√y = 2c.

Then

abc(a + b + c) =
3

16
. (1)

The sum a + b + c =
√
x+
√
y+
√
z

2
is positive. This means that either a, b, c are all positive,

or exactly two of them are negative (according to (1)). If, say, a and b are negative, then
so is their sum, i.e. a + b =

√
x < 0, which is false.

All that remains to be proven is

(a + b)(a + c) + (b + a)(b + c) + (c + a)(c + a) ≥ 3.

But, ∑
cyc

(a + b)(a + c) =
∑
cyc

a2 + 3
∑
cyc

ab ≥ 4
∑
cyc

ab ≥ 4
√

3abc(a + b + c) = 3,

which is exactly what we wanted. Equality holds if and only if x = y = z = 1.
For the last inequality we have used (m+n+p)2 ≥ 3(mn+np+pm), written for m =

√
ab,

n =
√
bc, p =

√
ca.

Problem 3. Let P1P2 . . . Pn a regular n-gen. A frog situated at a vertex Pk (1 ≤ k ≤
n) can jump to one of the vertices Pk+2 or Pk−3, the indexes being considered modulo n.
Determine the set of positive integers n ≥ 3 for which the frog can make n jumps such
that it visits all the vertices of the n-gon and returns to its starting vertex.

Andrei Eckstein

Solution. We prove that the convenient numbers are those that are multiples of 5 and
those that are not multiples of 6.
If n has the given property, denote by a the number of jumps of type Pk 7→ Pk+2, and let
b be the number of jumps of type Pk 7→ Pk−3. Then a+ b = n and n | 2a−3b, which leads
to n | 5a and n | 5b. As 0 ≤ a, b ≤ n, we must have either a = 0, b = n, or b = 0, a = n,
or 5 | n. By only making jumps of type Pk 7→ Pk+2, the frog can visit all the vertices if
and only if n is odd; making only jumps of type Pk 7→ Pk−3, the frog visits all the vertices
if and only if 3 - n. In conclusion, if n has the given property, then either it is not a
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multiple of 2, or it is not a multiple of 3, or it is a multiple of 5.

Conversely, we have seen that if 6 - n, then the frog can visit all the vertices by making
jumps of a single type.
All that is left is to give an example of a way to choose the frog’s jumps in the case when
5 | n.
There are several such examples. One of them is: the frog jumps Pk 7→ Pk+2 (mod 5) if
5 - k and Pk 7→ Pk−3 (mod 5) if 5 | k.

Problem 4. Let ABC be an acute triangle in which AB < AC. Let M be the
midpoint of the side BC and consider D an arbitrary point of the line segment AM .
Let E be a point of the line segment BD and consider the point F of the line AB such
that lines EF and BC are parallel. If the orthocenter, H, of the triangle ABC lies at
the intersection point of lines AE and DF , prove that the angle bisectors of ∠BAC and
∠BDC meet on the line BC.

Vlad Robu

Solution. Let D′ be the orthogonal projection of H onto AM , E ′ the intersection point
of the lines BD′ and AH, and let F ′ be the intersection point of the lines D′H and AB.
We prove that D′ = D, E ′ = E, F ′ = F , hence HD ⊥ AM .
Let H0 and D′0 be the reflections across the point M , of the points H and D′, respectively.
It is well known that H0 is the antipode of A on the circumcircle of triangle ABC and, as
∠H0D

′
0A = ∠HD′M = 90◦, point D′0 also lies on the circumcircle of ABC. Thus, points

B,C,H,D′ all lie on the reflection of this circle across M , i.e. the quadrilateral BHD′C is
cyclic. It follows that ∠HD′E ′ = ∠HD′B = ∠HCB = 90◦−∠B = ∠F ′AH, which means
that the quadrilateral AF ′E ′D′ is cyclic. We obtain that ∠F ′E ′A = ∠F ′D′A = 90◦, which
means that lines E ′F ′ and BC are parallel.
If D is between A and D′), then E is between A and E ′, and F is between B and F ′

(where F is the intersection point of the lines DH and AB), hence EF can not be parallel
to BC. Similarly in the case when D is between D′ and M . It follows that it is necessary
to have D = D′, and then E = E ′, F = F ′.
As ABD′0C is cyclic, we have ∠ABD′0 = 180◦ − ∠ACD′0, and therefore sin(∠ABD′0) =
sin(∠ACD′0). But since M is the midpoint of BC, triangles ABD′0 and ACD′0 have the
same area surface, i.e. AB ·BD′0 sin(∠ABD′0) = AC ·CD′0 sin(∠ABD′0), hence AB ·BD′0 =

AC · CD′0, or AB · CD = AC · BD, which means AB
AC

= DB
DC

. The converse of the Angle
Bisector Theorem proves the conclusion.
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