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Problem 1. What is the smallest value that the sum of the digits of the number
3n2 + n + 1, n ∈ N, can take?

Solution. (Cristian Mangra)
For n = 8 we have 3n2 + n + 1 = 201 whose sum of the digits is 3.
We prove that the sum of the digits of 3n2 + n + 1 cannot be 1 or 2. As 3n2 + n + 1 is
odd, it cannot be written as 10k or 2 · 10k, k ∈ N, nor can it be written as 10k + 10j with
k, j > 0. If 3n2 + n + 1 = 10k + 1, then n(3n + 1) = 10k. But n and 3n + 1 are co-prime,
hence they must be 2k and 5k. As n < 3n + 1, we must have n = 2k and 3n + 1 = 5k,
which is not possible because 5k > 4k > 3 ·2k +1 if k ≥ 2, and k = 1 does not work either.

Problem 2. Let n ≥ 3 be a positive integer. Consider an n× n square. In each cell
of the square, one of the numbers from the set M = {1, 2, . . . , 2n − 1} is to be written.
One such filling is called ”good” if, for every index i, 1 ≤ i ≤ n, row no. i and column no.
i, together, contain all the elements of M .
a) Prove that there exists n ≥ 3 for which a good filling exists.
b) Prove that for n = 2017 there is no good filling of the n× n square.

Solution.
a) For n = 4 the filling below is good.

1 2 4 5
3 1 6 4
7 5 1 2
6 7 3 1

b) We prove that there is no good filling of an n×n square if n is odd. Assume the contrary
to be true. Then, for some odd number n, we have that, for every index i, 1 ≤ i ≤ n, the
row no. i and the column no. i contain, together, exactly once, each element of M . If
we denote by aij the number situated on row no. i and column no. j, i, j ∈ {1, 2, . . . , n},
and Si = ai1 + ai2 + . . . + ain + a1i + a2i + . . . + ani in which the term aii only appears
once, then each element of M must appear in n such sums. But if aij = k, i 6= j, then
the element k will contribute to both Si and Sj. Thus, any number that is not situated
on the main diagonal contributes to two sums. But in total, there is an odd number of
sums, so each element of M must appear an odd number of times on the main diagonal.
Thus, each element of M neads to appear at least once on the main diagonal, which is
not possible because there are 2n− 1 elements in M and only n places on the diagonal.

Problem 3. Consider an acute triangle ABC in which A1, B1, and C1 are the feet
of the altitudes dropped from A, B, and C, respectively, and H is the orthocenter. The
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perpendiculars dropped from H onto A1C1 and A1B1 intersect lines AB and AC at P
and Q, respectively. Prove that the line perpendicular to B1C1 that passes through A
also contains the midpoint of the line segment PQ.

Solution 1. (Cristian Mangra)
Point H is the incenter of triangle A1B1C1, while A is the excenter of the same triangle,
corresponding to the side B1C1. Let D, E, and F be the orthogonal projections of points
P , Q, and H, respectively, onto the line B1C1. Let S be the intersection of lines PH
and A1C1, and let T be the intersection of lines QH and A1B1. Then it follows that
C1D = C1S = C1F (1), and B1E = B1T = B1F (2). If M is the projection of A onto
B1C1, it follows that FC1 = MB1 (3). From (1), (2), and (3) we obtain that M is the
midpoint of the line segment DE. Thus, AM is the perpendicular bisector of the line
segment DE and, in the right trapezoid DEQP , it cuts side PQ at its midpoint.

Solution 2. (Mircea Fianu)
Let A′, B′ and C ′ be the reflections of point H with respect to the sides BC, CA, and
AB, respectively. Triangle A′B′C ′ is the image of triangle A1B1C1 through a homothety
centered at H, and has the same circumcircle as ABC. Moreover, A′H, B′H, and C ′H
are the angle bisectors of triangle A′B′C ′. Triangle QHB′ is isosceles with QH = QB′,
therefore ∠HB′Q = ∠QHB′. It follows that
∠C ′B′Q = ∠HB′Q + ∠C ′B′H = ∠QHB1 + ∠C1B1H = ∠QHB1 + ∠HB1A1 = 90◦.
Similarly, ∠B′C ′P = 90◦. As AB′ = AC ′, the perpendicular from A to B1C1 is the
perpendicular bisector of the line segment B′C ′, hence parallel with QB′ and PC ′, so it
will cut the side PQ of the trapezoid B′C ′PQ at its midpoint.
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Problem 4. Determine the triples of positive integers (x, y, z) such that x4+y4 = 2z2

and x, y are co-prime.

Solution.
Let (x, y, z) be a solution of the problem. Then, notice that x, y are odd, hence z is also
odd, and co-prime with xy. The equation can we written successively x8+2x4y4+y8 = 4z4,

or (x4 − y4)2 = 4z4 − 4x4y4, or z4 − (xy)4 =
(

x4−y4
2

)2

. We prove that the equation

a4 − b4 = c2 (∗), has no solutions (a, b, c), where a, b, c are positive integers and a, b are
co-prime. Assume the contrary to be true. Consider (a0, b0, c0) ∈ N3 the solution of the
above equation with a0 minimum. If b0 is odd, from b40+c20 = a40 we deduce that there exist
positive integers m, n, m > n, of different parities, such that a0 = m2 +n2, b20 = m2−n2,
and c0 = 2mn. It follows that m4 − n4 = (a0b0)

2, i.e. the triple (m,n, ab) is a solution of
equation (∗), with m,n, ab > 0 and (m,n) = 1. This contradicts the minimality of a0. If b
is even, there exist m,n ∈ N, m > n, such that a2 = m2 +n2, b2 = 2mn, and c = m2−n2.
We may assume that m is even, n is odd. From b2 = 2mn it follows that 2m = p2, n = q2,
i.e. m = 2p21, n = q2, with q odd, (p1, q) = 1. Thus, a2 = (2p21)

2 + (q2)2, which means that
there exist r, s ∈ N, r > s, such that a = r2 + s2, 2p21 = 2rs, q2 = r2− s2. From (r, s) = 1
and rs = p21 it follows that r = u2, s = v2, and (u, v) = 1. This means that u4 − v4 = q2,
i.e. (u, v, q) is a solution of equation (∗) with u, v, q ∈ N, (u, v) = 1, and u < a0, which
contradicts the choice of a0.

Getting back to the equation z4 − (xy)4 =
(

x4−y4
2

)2

, from the above we can see that the

only solutions it may have are with x4 − y4 = 0, i.e. with x = y. But, as (x, y) = 1,
it follows that one must have x = y = 1, and finally that x = y = z = 1 is the only solution.

3


