Mathematical Danube Competition 2017, juniors

Călăraşi, October 28, 2017

Problem 1. What is the smallest value that the sum of the digits of the number $3 n^{2}+n+1, n \in \mathbb{N}$, can take?

Solution. (Cristian Mangra)
For $n=8$ we have $3 n^{2}+n+1=201$ whose sum of the digits is 3 .
We prove that the sum of the digits of $3 n^{2}+n+1$ cannot be 1 or 2 . As $3 n^{2}+n+1$ is odd, it cannot be written as 10^{k} or $2 \cdot 10^{k}, k \in \mathbb{N}$, nor can it be written as $10^{k}+10^{j}$ with $k, j>0$. If $3 n^{2}+n+1=10^{k}+1$, then $n(3 n+1)=10^{k}$. But n and $3 n+1$ are co-prime, hence they must be 2^{k} and 5^{k}. As $n<3 n+1$, we must have $n=2^{k}$ and $3 n+1=5^{k}$, which is not possible because $5^{k}>4^{k}>3 \cdot 2^{k}+1$ if $k \geq 2$, and $k=1$ does not work either.

Problem 2. Let $n \geq 3$ be a positive integer. Consider an $n \times n$ square. In each cell of the square, one of the numbers from the set $M=\{1,2, \ldots, 2 n-1\}$ is to be written. One such filling is called "good" if, for every index $i, 1 \leq i \leq n$, row no. i and column no. i, together, contain all the elements of M.
a) Prove that there exists $n \geq 3$ for which a good filling exists.
b) Prove that for $n=2017$ there is no good filling of the $n \times n$ square.

Solution.

a) For $n=4$ the filling below is good.

1	2	4	5
3	1	6	4
7	5	1	2
6	7	3	1

b) We prove that there is no good filling of an $n \times n$ square if n is odd. Assume the contrary to be true. Then, for some odd number n, we have that, for every index $i, 1 \leq i \leq n$, the row no. i and the column no. i contain, together, exactly once, each element of M. If we denote by $a_{i j}$ the number situated on row no. i and column no. $j, i, j \in\{1,2, \ldots, n\}$, and $S_{i}=a_{i 1}+a_{i 2}+\ldots+a_{i n}+a_{1 i}+a_{2 i}+\ldots+a_{n i}$ in which the term $a_{i i}$ only appears once, then each element of M must appear in n such sums. But if $a_{i j}=k, i \neq j$, then the element k will contribute to both S_{i} and S_{j}. Thus, any number that is not situated on the main diagonal contributes to two sums. But in total, there is an odd number of sums, so each element of M must appear an odd number of times on the main diagonal. Thus, each element of M neads to appear at least once on the main diagonal, which is not possible because there are $2 n-1$ elements in M and only n places on the diagonal.

Problem 3. Consider an acute triangle $A B C$ in which A_{1}, B_{1}, and C_{1} are the feet of the altitudes dropped from A, B, and C, respectively, and H is the orthocenter. The
perpendiculars dropped from H onto $A_{1} C_{1}$ and $A_{1} B_{1}$ intersect lines $A B$ and $A C$ at P and Q, respectively. Prove that the line perpendicular to $B_{1} C_{1}$ that passes through A also contains the midpoint of the line segment $P Q$.

Solution 1. (Cristian Mangra)
Point H is the incenter of triangle $A_{1} B_{1} C_{1}$, while A is the excenter of the same triangle, corresponding to the side $B_{1} C_{1}$. Let D, E, and F be the orthogonal projections of points P, Q, and H, respectively, onto the line $B_{1} C_{1}$. Let S be the intersection of lines $P H$ and $A_{1} C_{1}$, and let T be the intersection of lines $Q H$ and $A_{1} B_{1}$. Then it follows that $C_{1} D=C_{1} S=C_{1} F(1)$, and $B_{1} E=B_{1} T=B_{1} F(2)$. If M is the projection of A onto $B_{1} C_{1}$, it follows that $F C_{1}=M B_{1}$ (3). From (1), (2), and (3) we obtain that M is the midpoint of the line segment $D E$. Thus, $A M$ is the perpendicular bisector of the line segment $D E$ and, in the right trapezoid $D E Q P$, it cuts side $P Q$ at its midpoint.

Solution 2. (Mircea Fianu)
Let A^{\prime}, B^{\prime} and C^{\prime} be the reflections of point H with respect to the sides $B C, C A$, and $A B$, respectively. Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the image of triangle $A_{1} B_{1} C_{1}$ through a homothety centered at H, and has the same circumcircle as $A B C$. Moreover, $A^{\prime} H, B^{\prime} H$, and $C^{\prime} H$ are the angle bisectors of triangle $A^{\prime} B^{\prime} C^{\prime}$. Triangle $Q H B^{\prime}$ is isosceles with $Q H=Q B^{\prime}$, therefore $\angle H B^{\prime} Q=\angle Q H B^{\prime}$. It follows that $\angle C^{\prime} B^{\prime} Q=\angle H B^{\prime} Q+\angle C^{\prime} B^{\prime} H=\angle Q H B_{1}+\angle C_{1} B_{1} H=\angle Q H B_{1}+\angle H B_{1} A_{1}=90^{\circ}$. Similarly, $\angle B^{\prime} C^{\prime} P=90^{\circ}$. As $A B^{\prime}=A C^{\prime}$, the perpendicular from A to $B_{1} C_{1}$ is the perpendicular bisector of the line segment $B^{\prime} C^{\prime}$, hence parallel with $Q B^{\prime}$ and $P C^{\prime}$, so it will cut the side $P Q$ of the trapezoid $B^{\prime} C^{\prime} P Q$ at its midpoint.

Problem 4. Determine the triples of positive integers (x, y, z) such that $x^{4}+y^{4}=2 z^{2}$ and x, y are co-prime.

Solution.

Let (x, y, z) be a solution of the problem. Then, notice that x, y are odd, hence z is also odd, and co-prime with $x y$. The equation can we written successively $x^{8}+2 x^{4} y^{4}+y^{8}=4 z^{4}$, or $\left(x^{4}-y^{4}\right)^{2}=4 z^{4}-4 x^{4} y^{4}$, or $z^{4}-(x y)^{4}=\left(\frac{x^{4}-y^{4}}{2}\right)^{2}$. We prove that the equation $a^{4}-b^{4}=c^{2} \quad(*)$, has no solutions (a, b, c), where a, b, c are positive integers and a, b are co-prime. Assume the contrary to be true. Consider $\left(a_{0}, b_{0}, c_{0}\right) \in \mathbb{N}^{3}$ the solution of the above equation with a_{0} minimum. If b_{0} is odd, from $b_{0}^{4}+c_{0}^{2}=a_{0}^{4}$ we deduce that there exist positive integers $m, n, m>n$, of different parities, such that $a_{0}=m^{2}+n^{2}, b_{0}^{2}=m^{2}-n^{2}$, and $c_{0}=2 m n$. It follows that $m^{4}-n^{4}=\left(a_{0} b_{0}\right)^{2}$, i.e. the triple $(m, n, a b)$ is a solution of equation $(*)$, with $m, n, a b>0$ and $(m, n)=1$. This contradicts the minimality of a_{0}. If b is even, there exist $m, n \in \mathbb{N}, m>n$, such that $a^{2}=m^{2}+n^{2}, b^{2}=2 m n$, and $c=m^{2}-n^{2}$. We may assume that m is even, n is odd. From $b^{2}=2 m n$ it follows that $2 m=p^{2}, n=q^{2}$, i.e. $m=2 p_{1}^{2}, n=q^{2}$, with q odd, $\left(p_{1}, q\right)=1$. Thus, $a^{2}=\left(2 p_{1}^{2}\right)^{2}+\left(q^{2}\right)^{2}$, which means that there exist $r, s \in \mathbb{N}, r>s$, such that $a=r^{2}+s^{2}, 2 p_{1}^{2}=2 r s, q^{2}=r^{2}-s^{2}$. From $(r, s)=1$ and $r s=p_{1}^{2}$ it follows that $r=u^{2}, s=v^{2}$, and $(u, v)=1$. This means that $u^{4}-v^{4}=q^{2}$, i.e. (u, v, q) is a solution of equation $(*)$ with $u, v, q \in \mathbb{N},(u, v)=1$, and $u<a_{0}$, which contradicts the choice of a_{0}.
Getting back to the equation $z^{4}-(x y)^{4}=\left(\frac{x^{4}-y^{4}}{2}\right)^{2}$, from the above we can see that the only solutions it may have are with $x^{4}-y^{4}=0$, i.e. with $x=y$. But, as $(x, y)=1$, it follows that one must have $x=y=1$, and finally that $x=y=z=1$ is the only solution.

