
Algebra

A1. Let a, b, c be positive real numbers such that a + b + c + ab + bc + ca + abc = 7. Prove

that
√
a2 + b2 + 2 +

√
b2 + c2 + 2 +

√
c2 + a2 + 2 ≥ 6.

Solution. First we see that x2 + y2 + 1 ≥ xy + x+ y. Indeed, this is equivalent to

(x− y)2 + (x− 1)2 + (y − 1)2 ≥ 0.

Therefore

√
a2 + b2 + 2 +

√
b2 + c2 + 2 +

√
c2 + a2 + 2

≥
√
ab+ a+ b+ 1 +

√
bc+ b+ c+ 1 +

√
ca+ c+ a+ 1

=
√

(a+ 1)(b+ 1) +
√

(b+ 1)(a+ 1) +
√

(c+ 1)(a+ 1)

It follows from the AM-GM inequality that√
(a+ 1)(b+ 1) +

√
(b+ 1)(a+ 1) +

√
(c+ 1)(a+ 1)

≥ 3
3

√√
(a+ 1)(b+ 1) ·

√
(b+ 1)(a+ 1) ·

√
(c+ 1)(a+ 1)

= 3 3
√

(a+ 1)(b+ 1)(c+ 1)

On the other hand, the given condition is equivalent to (a + 1)(b + 1)(c + 1) = 8 and we get

the desired inequality.

Obviously, equality is attained if and only if a = b = c = 1.

Remark. The condition of positivity of a, b, c is superfluous and the equality · · · = 7 can be

replaced by the inequality · · · ≥ 7. Indeed, the above proof and the triangle inequality imply

that

√
a2 + b2 + 2 +

√
b2 + c2 + 2 +

√
c2 + a2 + 2 ≥ 3 3

√
(|a|+ 1)(|b|+ 1)(|c|+ 1)

≥ 3 3
√
|a+ 1|.|b+ 1|.|c+ 1| ≥ 6.
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A2. Let a and b be positive real numbers such that 3a2 + 2b2 = 3a + 2b. Find the minimum

value of

A =

√
a

b(3a+ 2)
+

√
b

a(2b+ 3)
.

Solution. By the Cauchy-Schwarz inequality we have that

5(3a2 + 2b2) = 5(a2 + a2 + a2 + b2 + b2) ≥ (3a+ 2b)2

(or use that the last inequality is equivalent to (a− b)2 ≥ 0).

So, with the help of the given condition we get that 3a+2b ≤ 5. Now, by the AM-GM inequality

we have that

A ≥ 2

√√√√√ a

b(3a+ 2)
·

√
b

a(2b+ 3)
=

2
4
√

(3a+ 2)(2b+ 3)
.

Finally, using again the AM-GM inequality, we get that

(3a+ 2)(2b+ 3) ≤
(

3a+ 2b+ 5

2

)2

≤ 25,

so A ≥ 2/
√

5 and the equality holds if and only if a = b = 1.
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A3. Let a, b, c, d be real numbers such that 0 ≤ a ≤ b ≤ c ≤ d. Prove the inequality

ab3 + bc3 + cd3 + da3 ≥ a2b2 + b2c2 + c2d2 + d2a2.

Solution. The inequality is equivalent to

(ab3 + bc3 + cd3 + da3)2 ≥ (a2b2 + b2c2 + c2d2 + d2a2)2.

By the Cauchy-Schwarz inequality,

(ab3 + bc3 + cd3 + da3)(a3b+ b3c+ c3d+ d3a) ≥ (a2b2 + b2c2 + c2d2 + d2a2)2.

Hence it is sufficient to prove that

(ab3 + bc3 + cd3 + da3)2 ≥ (ab3 + bc3 + cd3 + da3)(a3b+ b3c+ c3d+ d3a),

i.e. to prove ab3 + bc3 + cd3 + da3 ≥ a3b+ b3c+ c3d+ d3a.

This inequality can be written successively

a(b3 − d3) + b(c3 − a3) + c(d3 − b3) + d(a3 − c3) ≥ 0,

or

(a− c)(b3 − d3)− (b− d)(a3 − c3) ≥ 0,

which comes down to

(a− c)(b− d)(b2 + bd+ d2 − a2 − ac− c2) ≥ 0.

The last inequality is true because a− c ≤ 0, b−d ≤ 0, and (b2−a2) + (bd−ac) + (d2− c2) ≥ 0

as a sum of three non-negative numbers.

The last inequality is satisfied with equality whence a = b and c = d. Combining this with

the equality cases in the Cauchy-Schwarz inequality we obtain the equality cases for the initial

inequality: a = b = c = d.

Remark. Instead of using the Cauchy-Schwarz inequality, once the inequality ab3 + bc3 + cd3 +

da3 ≥ a3b+ b3c+ c3d+ d3a is established, we have 2(ab3 + bc3 + cd3 + da3) ≥ (ab3 + bc3 + cd3 +

da3) + (a3b + b3c + c3d + d3a) = (ab3 + a3b) + (bc3 + b3c) + (cd3 + c3d) + (da3 + d3a)
AM−GM

≥

2a2b2 + 2b2c2 + 2c2d2 + 2d2a2 which gives the conclusion.
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A4. Let x, y, z be three distinct positive integers. Prove that

(x+ y + z)(xy + yz + zx− 2) ≥ 9xyz.

When does the equality hold?

Solution. Since x, y, z are distinct positive integers, the required inequality is symmetric and

WLOG we can suppose that x ≥ y + 1 ≥ z + 2. We consider 2 possible cases:

Case 1. y ≥ z + 2. Since x ≥ y + 1 ≥ z + 3 it follows that

(x− y)2 ≥ 1, (y − z)2 ≥ 4, (x− z)2 ≥ 9

which are equivalent to

x2 + y2 ≥ 2xy + 1, y2 + z2 ≥ 2yz + 4, x2 + z2 ≥ 2xz + 9

or otherwise

zx2 + zy2 ≥ 2xyz + z, xy2 + xz2 ≥ 2xyz + 4x, yx2 + yz2 ≥ 2xyz + 9y.

Adding up the last three inequalities we have

xy(x+ y) + yz(y + z) + zx(z + x) ≥ 6xyz + 4x+ 9y + z

which implies that (x+ y + z)(xy + yz + zx− 2) ≥ 9xyz + 2x+ 7y − z.

Since x ≥ z + 3 it follows that 2x+ 7y − z ≥ 0 and our inequality follows.

Case 2. y = z + 1. Since x ≥ y + 1 = z + 2 it follows that x ≥ z + 2, and replacing y = z + 1

in the required inequality we have to prove

(x+ z + 1 + z)(x(z + 1) + (z + 1)z + zx− 2) ≥ 9x(z + 1)z

which is equivalent to

(x+ 2z + 1)(z2 + 2zx+ z + x− 2)− 9x(z + 1)z ≥ 0

Doing easy algebraic manipulations, this is equivalent to prove

(x− z − 2)(x− z + 1)(2z + 1) ≥ 0

which is satisfied since x ≥ z + 2.

The equality is achieved only in the Case 2 for x = z + 2, so we have equality when (x, y, z) =

(k + 2, k + 1, k) and all the permutations for any positive integer k.
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Combinatorics

C1. Consider a regular 2n+ 1-gon P in the plane, where n is a positive integer. We say that

a point S on one of the sides of P can be seen from a point E that is external to P , if the line

segment SE contains no other points that lie on the sides of P except S. We want to color

the sides of P in 3 colors, such that every side is colored in exactly one color, and each color

must be used at least once. Moreover, from every point in the plane external to P , at most 2

different colors on P can be seen (ignore the vertices of P , we consider them colorless). Find

the largest positive integer for which such a coloring is possible.

Solution. Answer: n = 1 is clearly a solution, we can just color each side of the equilateral

triangle in a different color, and the conditions are satisfied. We prove there is no larger n that

fulfills the requirements.

Lemma 1. Given a regular 2n+ 1-gon in the plane, and a sequence of n+ 1 consecutive sides

s1, s2, . . . , sn+1 there is an external point Q in the plane, such that the color of each si can be

seen from Q, for i = 1, 2, . . . , n+ 1.

Proof. It is obvious that for a semi-circle S, there is a point R in the plane far enough on the

perpendicular bisector of the diameter of S such that almost the entire semi-circle can be seen

from R.

Now, it is clear that looking at the circumscribed circle around the 2n + 1-gon, there is a

semi-circle S such that each si either has both endpoints on it, or has an endpoint that is on

the semi-circle, and is not on the semicircle’s end. So, take Q to be a point in the plane from

which almost all of S can be seen, clearly, the color of each si can be seen from Q. �

Take n ≥ 2, denote the sides a1, a2, . . . , a2n+1 in that order, and suppose we have a coloring

that satisfies the condition of the problem. Let’s call the 3 colors red, green and blue. We must

have 2 adjacent sides of different colors, say a1 is red and a2 is green. Then, by Lemma 1:

(i) We cannot have a blue side among a1, a2, . . . , an+1.
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(ii) We cannot have a blue side among a2, a1, a2n+1, . . . , an+3.

We are required to have at least one blue side, and according to 1) and 2), that can only be an+2,

so an+2 is blue. Now, applying Lemma 1 on the sequence of sides a2, a3, . . . , an+2 we get that

a2, a3, . . . , an+1 are all green. Applying Lemma 1 on the sequence of sides a1, a2n+1, a2n, . . . , an+2

we get that a2n+1, a2n, . . . , an+3 are all red.

Therefore an+1, an+2 and an+3 are all of different colors, and for n ≥ 2 they can all be seen

from the same point according to Lemma 1, so we have a contradiction.
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C2. Consider a regular 2n-gon P in the plane, where n is a positive integer. We say that a

point S on one of the sides of P can be seen from a point E that is external to P , if the line

segment SE contains no other points that lie on the sides of P except S. We want to color

the sides of P in 3 colors, such that every side is colored in exactly one color, and each color

must be used at least once. Moreover, from every point in the plane external to P , at most 2

different colors on P can be seen (ignore the vertices of P , we consider them colorless). Find

the number of distinct such colorings of P (two colorings are considered distinct if at least one

side is colored differently).

Solution. Answer: For n = 2, the answer is 36; for n = 3, the answer is 30 and for n ≥ 4, the

answer is 6n.

Lemma 1. Given a regular 2n-gon in the plane and a sequence of n consecutive sides

s1, s2, . . . , sn there is an external point Q in the plane, such that the color of each si can

be seen from Q, for i = 1, 2, . . . , n.

Proof. It is obvious that for a semi-circle S, there is a point R in the plane far enough on the

bisector of its diameter such that almost the entire semi-circle can be seen from R.

Now, it is clear that looking at the circumscribed circle around the 2n-gon, there is a semi-circle

S such that each si either has both endpoints on it, or has an endpoint that’s on the semi-circle,

and is not on the semi-circle’s end. So, take Q to be a point in the plane from which almost

all of S can be seen, clearly, the color of each si can be seen from Q.

Lemma 2. Given a regular 2n-gon in the plane, and a sequence of n + 1 consecutive sides

s1, s2, . . . , sn+1 there is no external point Q in the plane, such that the color of each si can be

seen from Q, for i = 1, 2, . . . , n+ 1.

Proof. Since s1 and sn+1 are parallel opposite sides of the 2n-gon, they cannot be seen at the

same time from an external point.

For n = 2, we have a square, so all we have to do is make sure each color is used. Two sides

will be of the same color, and we have to choose which are these 2 sides, and then assign colors
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according to this choice, so the answer is

(
4

2

)
.3.2 = 36.

For n = 3, we have a hexagon. Denote the sides as a1, a2, . . . q6, in that order. There must be

2 consecutive sides of different colors, say a1 is red, a2 is blue. We must have a green side, and

only a4 and a5 can be green. We have 3 possibilities:

1) a4 is green, a5 is not. So, a3 must be blue and a5 must be blue (by elimination) and a6 must

be blue, so we get a valid coloring.

2) Both a4 and a5 are green, thus a6 must be red and a5 must be blue, and we get the coloring

rbbggr.

3) a5 is green, a4 is not. Then a6 must be red. Subsequently, a4 must be red (we assume it is

not green). It remains that a3 must be red, and the coloring is rbrrgr.

Thus, we have 2 kinds of configurations:

i) 2 opposite sides have 2 opposite colors and all other sides are of the third color. This can

happen in 3.(3.2.1) = 18 ways (first choosing the pair of opposite sides, then assigning colors),

ii) 3 pairs of consecutive sides, each pair in one of the 3 colors. This can happen in 2.6 = 12

ways (2 partitioning into pairs of consecutive sides, for each partitioning, 6 ways to assign the

colors).

Thus, for n = 3, the answer is 18 + 12 = 30.

Finally, let’s address the case n ≥ 4. The important thing now is that any 4 consecutive sides

can be seen from an external point, by Lemma 1.

Denote the sides as a1, a2, . . . , a2n. Again, there must be 2 adjacent sides that are of different

colors, say a1 is blue and a2 is red. We must have a green side, and by Lemma 1, that can only

be an+1 or an+2. So, we have 2 cases:

Case 1: an+1 is green, so an must be red (cannot be green due to Lemma 1 applied to

a1, a2, . . . , an, cannot be blue for the sake of a2, . . . , an+1. If an+2 is red, so are an+3, . . . , a2n,

and we get a valid coloring: a1 is blue, an+1 is green, and all the others are red.

If an+2 is green:

a) an+3 cannot be green, because of a2, a1, a2n . . . , an+3.
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b) an+3 cannot be blue, because the 4 adjacent sides an, . . . , an+3 can be seen (this is the case

that makes the separate treatment of n ≥ 4 necessary)

c) an+3 cannot be red, because of a1, a2n, . . . , an+2.

So, in the case that an+2 is also green, we cannot get a valid coloring.

Case 2: an+2 is green is treated the same way as Case 1.

This means that the only valid configuration for n ≥ 4 is having 2 opposite sides colored in 2

different colors, and all other sides colored in the third color. This can be done in n · 3 · 2 = 6n

ways.
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C3. We have two piles with 2000 and 2017 coins respectively. Ann and Bob take alternate

turns making the following moves: The player whose turn is to move picks a pile with at least

two coins, removes from that pile t coins for some 2 6 t 6 4, and adds to the other pile 1 coin.

The players can choose a different t at each turn, and the player who cannot make a move loses.

If Ann plays first determine which player has a winning strategy.

Solution. Denote the number of coins in the two piles by X and Y . We say that the pair

(X, Y ) is losing if the player who begins the game loses and that the pair (X, Y ) is winning

otherwise. We shall prove that (X, Y ) is loosing if X − Y ≡ 0, 1, 7 mod 8, and winning if

X − Y ≡ 2, 3, 4, 5, 6 mod 8.

Lemma 1. If we have a winning pair (X, Y ) then we can always play in such a way that the

other player is then faced with a losing pair.

Proof of Lemma 1. Assume X ≥ Y and write X = Y + 8k+ ` for some non-negative integer

k and some ` ∈ {2, 3, 4, 5, 6}. If ` = 2, 3, 4 then we remove two coins from the first pile and add

one coin to the second pile. If ` = 5, 6 then we remove four coins from the first pile and add

one coin to the second pile. In each case we then obtain loosing pair

Lemma 2. If we are faced with a losing distribution then either we cannot play, or, however

we play, the other player is faced with a winning distribution.

Proof of Lemma 2. Without loss of generality we may assume

that we remove k coins from the first pile. The following table

show the new difference for all possible values of k and all possible

differences X − Y . So however we move, the other player will be

faced with a winning distribution.

k\X − Y 0 1 7

2 5 6 4

3 4 5 3

4 3 4 2

Since initially the coin difference is 1 mod 8, by Lemmas 1 and 2 Bob has a winning strategy:

He can play so that he is always faced with a winning distribution while Ann is always faced

with a losing distribution. So Bob cannot lose. On the other hand the game finishes after at

most 4017 moves, so Ann has to lose.
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Geometry

G1. Given a parallelogram ABCD. The line perpendicular to AC passing through C and the

line perpendicular to BD passing through A intersect at point P . The circle centered at point

P and radius PC intersects the line BC at point X, (X 6= C) and the line DC at point Y ,

(Y 6= C). Prove that the line AX passes through the point Y .

Solution. Denote the feet of the perpendiculars from

P to the lines BC and DC by M and N respectively

and let O = AC∩BD. Since the points O, M and N are

midpoints of CA, CX and CY respectively it suffices

to prove that M , N and O are collinear. According to

Menelaus’s theorem for 4BCD and points M , N and

O we have to prove that

BM

MC
.
CN

ND
.
DO

OB
= 1

Since DO = OB the above simplifies to
BM

CM
=
DN

CN
. It follows from BM = BC + CM and

DN = DC − CN = AB − CN that the last equality is equivalent to:

(1)
BC

CM
+ 2 =

AB

CN
.

Denote by S the foot of the perpendicular from B to AC. Since <)BCS = <)CPM = ϕ and

<)BAC = <)ACD = <)CPN = ψ we conclude that 4CBS ∼ 4PCM and 4ABS ∼ 4PCN .

Therefore
CM

BS
=
CP

BC
and

CN

BS
=
CP

AB

and thus,

CM =
CP.BS

BC
and CN =

CP.BS

AB
.
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Now equality (1) becomes AB2 −BC2 = 2CP.BS. It follows from

AB2 −BC2 = AS2 − CS2 = (AS − CS)(AS + CS) = 2OS.AC

that

DC2 −BC2 = 2CP.BS ⇐⇒ 2OS.AC = 2CP.BS ⇐⇒ OS.AC = CP.BS.

Since <)ACP = <)BSO = 90◦ and <)CAP = <)SBO we conclude that 4ACP ∼ 4BSO. This

implies OS.AC = CP.BS, which completes the proof.
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G2. Let ABC be an acute triangle such that AB is the shortest side of the triangle. Let D

be the midpoint of the side AB and P be an interior point of the triangle such that

<)CAP = <)CBP = <)ACB.

Denote by M and N the feet of the perpendiculars from P to BC and AC, respectively. Let p

be the line through M parallel to AC and q be the line through N parallel to BC. If p and q

intersect at K prove that D is the circumcenter of triangle MNK.

Solution. If γ = <)ACB then <)CAP = <)CBP = <)ACB = γ. Let E = KN ∩ AP and

F = KM ∩BP . We show that points E and F are midpoints of AP and BP , respectively.

Indeed, consider the triangle AEN . Since KN ‖ BC, we have <)ENA = <)BCA = γ. Moreover

<)EAN = γ giving that triangle AEN is isosceles, i.e. AE = EN . Next, consider the triangle

ENP . Since <)ENA = γ we find that

<)PNE = 90◦ −<)ENA = 90◦ − γ.

Now <)EPN = 90◦ − γ implies that the triangle ENP is isosceles triangle, i.e. EN = EP .

Since AE = EN = EP point E is the midpoint of AP and analogously, F is the midpoint of

BP . Moreover, D is also midpoint of AB and we conclude that DFPE is parallelogram.
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It follows from DE ‖ AP and KE ‖ BC that <)DEK = <)CBP = γ and analogously

<)DFK = γ.

We conclude that 4EDN ∼= 4FMD (ED = FP = FM , EN = EP = FD and <)DEN =

<)MFD = 180◦−γ) and thus ND = MD. Therefore D is a point on the perpendicular bisector

of MN . Further,

<)FDE = <)FPE = 360◦ −<)BPM −<)MPN −<)NPA =

= 360◦ − (90◦ − γ)− (180◦ − γ)− (90◦ − γ) = 3γ.

It follows that

<)MDN = <)FDE −<)FDM −<)EDN = <)FDE −<)END −<)EDN =

= <)FDE − (<)END +<)EDN) = 3γ − γ = 2γ.

Fianlly, KMCN is parallelogram, i.e. <)MKN = <)MCN = γ. Therefore D is a point on the

perpendicular bisector of MN and <)MDN = 2<)MKN , so D is the circumcenter of 4MNK.
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Problem G3. Consider triangle ABC such that AB ≤ AC. Point D on the arc BC of the

circumcirle of ABC not containing point A and point E on side BC are such that

<)BAD = <)CAE <
1

2
<)BAC.

Let S be the midpoint of segment AD. If <)ADE = <)ABC −<)ACB prove that

<)BSC = 2<)BAC.

Solution. Let the tangent to the circumcircle of 4ABC at point A intersect line BC at

T . Since AB ≤ AC we get that B lies between T and C. Since <)BAT = <)ACB and

<)ABT = <) 180◦ −<)ABC we get <)ETA = <)BTA = <)ABC −<)ACB = <)ADE which gives

that A,E,D, T are concyclic. Since

<)TDB +<)BCA = <)TDB +<)BDA = <)TDA = <)AET = <)ACB +<)EAC

this means <)TDB = <)EAC = <)DAB which means that TD is tangent to the circumcircle of

4ABC at point D.

Using similar triangles TAB and TCA we get

(1)
AB

AC
=
TA

TC
.
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Using similar triangles TBD and TDC we get

(2)
BD

CD
=
TD

TC
.

Using the fact that TA = TD with (1) and (2) we get

(3)
AB

AC
=
BD

CD
.

Now since <)DAB = <)CAE and <)BDA = <)ECA we get that the triangles DAB and CAE

are similar. Analogously, we get that triangles CAD and EAB are similar. These similarities

give us
DB

CE
=
AB

AE
and

CD

EB
=
CA

EA

which, when combined with (3) give us BE = CE giving E is the midpoint of side BC.

Using the fact that triangles DAB and CAE are similar with the fact that E is the midpoint

of BC we get:
2DS

CA
=
DA

CA
=
DB

CE
=
DB
CB
2

=
2DB

CB

implying that

(4)
DS

DB
=
CA

CB
.

Since <)SDB = <)ADB = <)ACB we get from (4) that the triangles SDB and ACB are

similar, giving us <)BSD = <)BAC. Analogously we get 4SDC and 4ABC are similar we

get <)CSD = <)CAB. Combining the last two equalities we get

2<)BAC = <)BAC +<)CAB = <)CSD +<)BSD = <)CSB.

This completes the proof.

Alternative solution (PSC).

Lemma 1. A point P is such that <)PXY = <)PY Z and <)PZY = <)PY X. If R is the

midpoint of XZ then <)XY P = <)ZY R.

Proof. We consider the case when P is inside the triangle XY Z (the other case is treated in

similar way). Let Q be the conjugate of P in 4XY Z and let Y Q intersects XZ at S.
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Then <)QXZ = <)QYX and <)QZX = <)QY Z and therefore 4SXY ∼ 4SQX and 4SZY ∼

4SQZ. Thus SX2 = SQ.SY = SZ2 and we conclude that S ≡ R. This completes the proof

of the Lemma.

For 4DCA we have <)CDE = <)ECA and <)EAC = <)ECD. By the Lemma 1 for 4DCA

and point E we have that <)SCA = <)DCE. Therefore

<)DSC = <)SAC +<)SCA = <)SAC +<)DCE = <)SAC +<)BAD = <)BAC.

By analogy, Lemma 1 applied for4BDA and point E gives <)BSD = <)BAC. Thus, <)BSC =

2<)BAC.
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Problem G4. Let ABC be a scalene triangle with circumcircle Γ and circumcenter O. Let

M be the midpoint of BC and D be a point on Γ such that AD ⊥ BC. Let T be a point such

that BDCT is a parallelogram and Q a point on the same side of BC as A such that

<)BQM = <)BCA and <)CQM = <)CBA.

Let AO intersect Γ again at E and let the circumcircle of ETQ intersect Γ at point X 6= E.

Prove that the points A, M , and X are collinear.

Solution. Let X ′ be symmetric point to Q in line BC. Now since <)CBA = <)CQM =

<)CX ′M , <)BCA = <)BQM = <)BX ′M , we have

<)BX ′C = <)BX ′M +<)CX ′M = <)CBA+<)BCA = 180◦ −<)BAC

we have that X ′ ∈ Γ. Now since <)AX ′B = <)ACB = <)MX ′B we have that A,M,X ′ are

collinear. Note that since

<)DCB = <)DAB = 90◦ −<)ABC = <)OAC = <)EAC

we get that DBCE is an isosceles trapezoid.
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Since BDCT is a parallelogram we have MT = MD, with M,D, T being collinear, BD = CT ,

and since BDEC is an isosceles trapezoid we have BD = CE and ME = MD. Since

<)BTC = <)BDC = <)BED, CE = BD = CT and ME = MT

we have that E and T are symmetric with respect to the line BC. Now since Q and X ′ are

symmetric with respect to the line BC as well, this means that QX ′ET is an isosceles trapezoid

which means that Q,X ′, E, T are concyclic. Since X ′ ∈ Γ this means that X ≡ X ′ and therefore

A,M,X are collinear.

Alternative solution (PSC). Denote by H the orthocenter of 4ABC. We use the following

well known properties:

(i) Point D is the symmetric point of H with respect to BC. Indeed, if H1 is the symmetric

point of H with respect to BC then <)BH1C +<)BAC = 180◦ and therefore H1 ≡ D.

(ii) The symmetric point of H with respect to M is the point E. Indeed, if H2 is the symmetric

point of H with respect to M then BH2CH is parallelogram, <)BH2C + <)BAC = 180◦ and

since EB ‖ CH we have <)EBA = 90◦.

Since DETH is a parallelogram and MH = MD we have that DETH is a rectangle. Therefore

MT = ME and TE ⊥ BC implying that T and E are symmetric with respect to BC. Denote

by Q′ the symmetric point of Q with respect to BC. Then Q′ETQ is isosceles trapezoid, so Q′

is a point on the circumcircle of 4ETQ. Moreover <)BQ′C +<)BAC = 180◦ and we conclude

that Q′ ∈ Γ. Therefore Q′ ≡ X.

It remains to observe that <)CXM = <)CQM = <)CBA and <)CXA = <)CBA and we infer

that X, M and A are collinear.
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Problem G5. A point P lies in the interior of the triangle ABC. The lines AP , BP , and

CP intersect BC, CA, and AB at points D, E, and F , respectively. Prove that if two of the

quadrilaterals ABDE, BCEF , CAFD, AEPF , BFPD, and CDPE are concyclic, then all

six are concyclic.

Solution. We first prove the following lemma:

Lemma 1. Let ABCD be a convex quadrilateral and let AB ∩ CD = E and BC ∩DA = F .

Then the circumcircles of triangles ABF , CDF , BCE and DAE all pass through a common

point P . This point lies on line EF if and only if ABCD in concyclic.

Proof. Let the circumcircles of ABF and BCF intersect at P 6= B. We have

<)FPC = <)FPB +<)BPC = <)BAD +<)BEC = <)EAD +<)AED =

= 180◦ −<)ADE = 180◦ −<)FDC

which gives us F , P , C and D are concyclic. Similarly we have

<)APE = <)APB +<)BPE = <)AFB +<)BCD = <)DFC +<)FCD =

= 180◦ −<)FDC = 180◦ −<)ADE

which gives us E, P , A and D are concyclic. Since <)FPE = <)FPB + <)EPB = <)BAD +

<)BCD we get that <)FPE = 180◦ if and only if <)BAD+<)BCD = 180◦ which completes the

lemma. We now divide the problem into cases:

Case 1: AEPF and BFEC are concyclic. Here we get that

180◦ = <)AEP +<)AFP = 360◦ −<)CEB −<)BFC = 360◦ − 2<)CEB

and here we get that <)CEB = <)CFB = 90◦, from here it follows that P is the ortocenter of

4ABC and that gives us <)ADB = <)ADC = 90◦. Now the quadrilaterals CEPD and BDPF

are concyclic because

<)CEP = <)CDP = <)PDB = <)PFB = 90◦.
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Quadrilaterals ACDF and ABDE are concyclic because

<)AEB = <)ADB = <)ADC = <)AFC = 90◦.

Case 2: AEPF and CEPD are concyclic. Now by lemma 1 applied to the quadrilateral

AEPF we get that the circumcircles of CEP , CAF , BPF and BEA intersect at a point on

BC. Since D ∈ BC and CEPD is concyclic we get that D is the desired point and it follows

that BDPF , BAED, CAFD are all concylic and now we can finish same as Case 1 since

AEDB and CEPD are concyclic.

Case 3: AEPF and AEDB are concyclic. We apply lemma 1 as in Case 2 on the quadrilateral

AEPF . From the lemma we get that BDPF , CEPD and CAFD are concylic and we finish

off the same as in Case 1.

Case 4: ACDF and ABDE are concyclic. We apply lemma 1 on the quadrilateral AEPF and

get that the circumcircles of ACF , ECP , PFB and BAE intersect at one point. Since this

point is D (because ACDF and ABDE are concyclic) we get that AEPF , CEPD and BFPD

are concylic. We now finish off as in Case 1. These four cases prove the problem statement.

Remark. A more natural approach is to solve each of the four cases by simple angle chasing.
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Number Theory

NT1. Determine all sets of six consecutive positive integers such that the product of two of

them, added to the the product of other two of them is equal to the product of the remaining

two numbers.

Solution. Exactly two of the six numbers are multiples of 3 and these two need to be multiplied

together, otherwise two of the three terms of the equality are multiples of 3 but the third one

is not.

Let n and n+3 denote these multiples of 3. Two of the four remaining numbers give remainder

1 when divided by 3, while the other two give remainder 2, so the two other products are either

≡ 1 · 1 = 1 (mod 3) and ≡ 2 · 2 ≡ 1 (mod 3), or they are both ≡ 1 · 2 ≡ 2 (mod 3). In

conclusion, the term n(n+ 3) needs to be on the right hand side of the equality.

Looking at parity, three of the numbers are odd, and three are even. One of n and n + 3 is

odd, the other even, so exactly two of the other numbers are odd. As n(n+ 3) is even, the two

remaining odd numbers need to appear in different terms.

We distinguish the following cases:

I. The numbers are n− 2, n− 1, n, n+ 1, n+ 2, n+ 3.

The product of the two numbers on the RHS needs to be larger than n(n + 3). The only

possibility is (n − 2)(n − 1) + n(n + 3) = (n + 1)(n + 2) which leads to n = 3. Indeed,

1 · 2 + 3 · 6 = 4 · 5.

II. The numbers are n− 1, n, n+ 1, n+ 2, n+ 3, n+ 4.

As (n+ 4)(n− 1) + n(n+ 3) = (n+ 1)(n+ 2) has no solutions, n+ 4 needs to be on the RHS,

multiplied with a number having a different parity, so n− 1 or n+ 1.

(n+ 2)(n− 1) + n(n+ 3) = (n+ 1)(n+ 4) leads to n = 3. Indeed, 2 · 5 + 3 · 6 = 4 · 7.

(n+ 2)(n+ 1) + n(n+ 3) = (n− 1)(n+ 4) has no solution.

III. The numbers are n, n+ 1, n+ 2, n+ 3, n+ 4, n+ 5.
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We need to consider the following situations:

(n+ 1)(n+ 2) + n(n+ 3) = (n+ 4)(n+ 5) which leads to n = 6; indeed 7 · 8 + 6 · 9 = 10 · 11;

(n+ 2)(n+ 5) + n(n+ 3) = (n+ 1)(n+ 4) obviously without solutions, and

(n+ 1)(n+ 4) + n(n+ 3) = (n+ 2)(n+ 5) which leads to n = 2 (not a multiple of 3).

In conclusion, the problem has three solutions:

1 · 2 + 3 · 6 = 4 · 5, 2 · 5 + 3 · 6 = 4 · 7, and 7 · 8 + 6 · 9 = 10 · 11.
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NT2. Determine all positive integers n such that n2|(n− 1)!.

First solution. This is true for all positive integers n unless n = 8, 9, p, 2p for some prime p.

It is easy to check that 82 - (8− 1)! and 92 - (9− 1)! by determining the largest powers of 2 and

3 which divide the right hand sides. It is also immediate that p2 - (p− 1)! and (2p)2 - (2p− 1)!

as (p− 1)! is not divisible by p, while the largest power of p dividing (2p− 1)! is 1.

The case n = 1 is also clearly true. So it remains to show that n2|(n− 1)! in all other cases. It

is enough to show that in those cases, for every prime p which divides n, the largest power of

p dividing n2 is less than or equal to the largest power of p dividing (n − 1)!. So let us write

n = mpr where (m, p) = 1. The largest power of p dividing (n− 1)! is⌊
n− 1

p

⌋
+

⌊
n− 1

p2

⌋
+ · · · > (mpr−1 − 1) + · · ·+ (m− 1) = m

pr − 1

p− 1
− r

So it is enough to prove that

m
pr − 1

p− 1
> 3r.

We will distinguish between the cases p = 2, p = 3 and p > 5.

Case 1: Suppose p = 2. We will further distinguish the cases r > 4 and r 6 3

Case 1A: Suppose r > 4. Then

m
pr − 1

p− 1
> 2r − 1 = 8(1 + 1)r−3 − 1 > 8(1 + r − 3)− 1 = 3r + (5r − 17) > 3r.

Here, we have used Bernoulli’s inequality.

Case 1B: Suppose r 6 3. Because n 6= 2, 4, 8, then n has another prime divisor and so m > 3.

Then

m
pr − 1

p− 1
> 3(2r − 1) > 3r

where the last inequality is easily verifiable for r 6 3. (It also follows by applying Bernoulli’s

inequality.)

Case 2: Suppose p = 3. We will further distinguish three cases. The case r > 3 alone, and

the cases r = 2 and r = 1 separately.
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Case 2A: Suppose r > 3. Then

m
pr − 1

p− 1
>

3r − 1

2
=

9(1 + 2)r−2 − 1

2
>

9(1 + 2(r − 2))− 1

2
= 3r + (6r − 14) > 3r.

Case 2B: Suppose r = 2. Because n 6= 9, then n has another prime divisor and so m > 2.

Then

m
pr − 1

p− 1
> 8 > 6 = 3r.

Case 2C: Suppose r = 1. Because n 6= 3, 6, then n has another divisor which is bigger than 2.

So m > 4. Then

m
pr − 1

p− 1
> 4 > 3 = 3r.

Case 3: Suppose p > 5. We will further distinguish the cases r > 2 and r = 1.

Case 3A: Suppose r > 2. Then

m
pr − 1

p− 1
>

5r − 1

4
=

5(1 + 4)r−1 − 1

4
>

5(1 + 4(r − 1))− 1

4
= 3r + 2(r − 2) > 3r.

Case 3B: Suppose r = 1. Because n 6= p, 2p, then n has another divisor which is bigger than

2. So m > 3. Then

m
pr − 1

p− 1
> 3 = 3r.

Second solution. (PSC) Let n 6= 8, 9, p, 2p, where p is prime.

Let n be odd and p be the smallest prime divisor of n. If n = p2, then p ≥ 5, p < 2p < 3p < 4p

participate in (n − 1)! and so p4 = n2|(n − 1)!. If p < n
p
, then p < 2p and n

p
< 2n

p
all are less

that n and therefore participate in (n− 1)!. So n2|4n2 = p.2p.n
p
· 2n

p
|(n− 1)!.

Let n be even and n = 2km, where k is positive integer and m is odd. If m = 1, then k ≥ 4 and

2 < 22 < 2k−2 < 2k−1 shows that n2 = 22k|(n− 1)! for k ≥ 5 and the case k = 4 is seen directly.

Let now m > 1. If k ≥ 2, then the divisors 2 < m < 2k−1m and 2k of n work. If k = 1, then

m is not prime, and let p is the smallest prime divisor of m. Now 4, p < 2p and m
p
< 2m

p
work

when m 6= p2, and 4, p < 2p < 3p < 4p work when m = p2.
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NT3. Find all pairs of positive integers (x, y) such that 2x + 3y is a perfect square.

Solution. In order for the expression 2x + 3y to be a perfect square, a positive integer t such

that 2x + 3y = t2 should exist.

Case 1. If x is even, then there exists a positive integer z such that x = 2z. Then

(t− 2z)(t+ 2z) = 3y

Since t+2z− (t−2z) = 2z+1, which implies gcd(t−2z, t+2z)|2z+1, it follows that gcd(t−2z, t+

2z) = 1, hence t− 2z = 1 and t+ 2z = 3y, so we have 2z+1 + 1 = 3y.

For z = 1 we have 5 = 3y which clearly have no solution. For z ≥ 2 we have (modulo 4) that y

is even. Let y = 2k. Then 2z+1 = (3k − 1)(3k + 1) which is possible only when 3k − 1 = 2, i.e.

k = 1, y = 2, which implies that t = 5. So the pair (4, 2) is a solution to our problem.

Case 2. If y is even, then there exists a positive integer w such that y = 2w, and

(t− 3w)(t+ 3w) = 2x

Since t + 3w − (t − 3w) = 2 · 3w, we have gcd(t − 2z, t + 2z)|2 · 3w, which means that gcd(t −

3w, t+ 3w) = 2. Hence t− 3w = 2 and t+ 3w = 2x−1. So we have

2 · 3w + 2 = 2x−1 ⇒ 3w + 1 = 2x−2.

Here we see modulo 3 that x− 2 is even. Let x− 2 = 2m, then 3w = (2m− 1)(2m + 1), whence

m = 1 since gcd(2m − 1, 2m + 1) = 1. So we arrive again to the solution (4, 2).

Case 3. Let x and y be odd. For x ≥ 3 we have 2x + 3y ≡ 3 (mod 4) while t2 ≡ 0, 1 (mod 4),

a contradiction. For x = 1 we have 2 + 3y = t2. For y ≥ 2 we have 2 + 3y ≡ 2 (mod 9) while

t2 ≡ 0, 1, 4, 7 (mod 9). For y = 1 we have 5 = 2 + 3 = t2 clearly this doesn’t have solution.

Note. The proposer’s solution used Zsigmondy’s theorem in the final steps of cases 1 and 2.
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NT4. Solve in nonnegative integers the equation 5t + 3x4y = z2.

Solution. If x = 0 we have

z2 − 22y = 5t ⇐⇒ (z + 2y)(z − 2y) = 5t.

Putting z + 2y = 5a and z − 2y = 5b with a+ b = t we get 5a − 5b = 2y+1. This gives us b = 0

and now we have 5t − 1 = 2y+1. If y ≥ 2 then consideration by modulo 8 gives 2|t. Putting

t = 2s we get (5s−1)(5s +1) = 2y+1. This means 5s−1 = 2c and 5s +1 = 2d with c+d = y+1.

Subtracting we get 2 = 2d − 2c. Then we have c = 1, d = 2, but the equation 5s − 1 = 2 has

no solutions over nonnegative integers. Therefore so y ≥ 2 in this case gives us no solutions. If

y = 0 we get again 5t − 1 = 2 which again has no solutions in nonnegative integers. If y = 1

we get t = 1 and z = 3 which gives us the solution (t, x, y, z) = (1, 0, 1, 3).

Now if x ≥ 1 then by modulo 3 we have 2|t. Putting t = 2s we get

3x4y = z2 − 52s ⇐⇒ 3x4y = (z + 5s)(z − 5s).

Now we have z+ 5s = 3m2k and z− 5s = 3n2l, with k+ l = 2y and m+n = x ≥ 1. Subtracting

we get

2.5s = 3m2k − 3n2l.

Here we get that min{m,n} = 0. We now have a couple of cases.

Case 1. k = l = 0. Now we have n = 0 and we get the equation 2.5s = 3m − 1. From modulo

4 we get that m is odd. If s ≥ 1 we get modulo 5 that 4|m, a contradiction. So s = 0 and we

get m = 1. This gives us t = 0, x = 1, y = 0, z = 2.

Case 2. min{k, l} = 1. Now we deal with two subcases:

Case 2a. l > k = 1. We get 5s = 3m − 3n2l−1. Since min{m,n} = 0, we get that n = 0. Now

the equation becomes 5s = 3m − 2l−1. Note that l − 1 = 2y − 2 is even. By modulo 3 we get

that s is odd and this means s ≥ 1. Now by modulo 5 we get 3m ≡ 22y−2 ≡ 1,−1 (mod 5).

Here we get that m is even as well, so we write m = 2q. Now we get 5s = (3q−2y−1)(3q +2y−1).
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Therefore 3q − 2y−1 = 5v and 3q + 2y−1 = 5u with u + v = s. Then 2y = 5u − 5v, whence

v = 0 and we have 3q − 2y−1 = 1. Plugging in y = 1, 2 we get the solution y = 2, q = 1. This

gives us m = 2, s = 1, n = 0, x = 2, t = 2 and therefore z = 13. Thus we have the solution

(t, x, y, z) = (2, 2, 2, 13). If y ≥ 3 we get modulo 4 that q, q = 2r. Then (3r− 1)(3r + 1) = 2y−1.

Putting 3r − 1 = 2e and 3r + 1 = 2f with e+ f = y− 1 and subtracting these two and dividing

by 2 we get 2f−1 − 2e−1 = 1, whence e = 1, f = 2. Therefore r = 1, q = 2, y = 4. Now since

24 = 5u − 1 does not have a solution, it follows that there are no more solutions in this case.

Case 2b. k > l = 1. We now get 5s = 3m2k−1 − 3n. By modulo 4 (which we can use since

0 < k− 1 = 2y− 2) we get 3n ≡ −1 (mod 4) and therefore n is odd. Now since min{m,n} = 0

we get that m = 0, 0 + n = m + n = x ≥ 1. The equation becomes 5s = 22y−2 − 3x. By

modulo 3 we see that s is even. We now put s = 2g and obtain (2y−1 − 5g)(5g + 2y−1) = 3x.

Putting 2y−1 − 5g = 3h, 2y−1 + 5g = 3i, where i+ h = x, and subtracting the equations we get

3i − 3h = 2y. This gives us h = 0 and now we are solving the equation 3x + 1 = 2y.

The solution x = 0, y = 1 gives 1 − 5g = 1 without solution. If x ≥ 1 then by modulo 3 we

get that y is even. Putting y = 2y1 we obtain 3x = (2y1 − 1)(2y1 + 1). Putting 2y1 − 1 = 3x1

and 2y1 + 1 = 3x2 and subtracting we get 3x2 − 3x1 = 2. This equation gives us x1 = 0, x2 = 1.

Then y1 = 1, x = 1, y = 2 is the only solution to 3x + 1 = 2y with x ≥ 1. Now from

2− 5g = 1 we get g = 0. This gives us t = 0. Now this gives us the solution 1 + 3.16 = 49 and

(t, x, y, z) = (0, 1, 2, 7).

This completes all the cases and thus the solutions are (t, x, y, z) = (1, 0, 1, 3), (0, 1, 0, 2),

(2, 2, 2, 13), and (0, 1, 2, 7).

Note. The problem can be simplified by asking for solutions in positive integers (without

significant loss in ideas).

30



NT5. Find all positive integers n such that there exists a prime number p, such that

pn − (p− 1)n

is a power of 3.

Note. A power of 3 is a number of the form 3a where a is a positive integer.

Solution. Suppose that the positive integer n is such that

pn − (p− 1)n = 3a (1)

for some prime p and positive integer a.

If p = 2, then 2n− 1 = 3a by (1), whence (−1)n− 1 ≡ 0 (mod 3), so n should be even. Setting

n = 2s we obtain (2s − 1)(2s + 1) = 3a. It follows that 2s − 1 and 2s + 1 are both powers of 3,

but since they are both odd, they are co-prime, and we have 2s − 1 = 1, i.e. s = 1 and n = 2.

If p = 3, then (1) gives 3|2n, which is impossible.

Let p ≥ 5. Then it follows from (1) that we can not have 3|p− 1. This means that 2n − 1 ≡ 0

(mod 3), so n should be even, and let n = 2k. Then

p2k − (p− 1)2k = 3a ⇐⇒ (pk − (p− 1)k)(pk + (p− 1)k) = 3a.

If d = (pk − (p − 1)k, pk + (p − 1)k), then d|2pk. However, both numbers are powers of 3, so

d = 1 and pk − (p− 1)k = 1, pk + (p− 1)k = 3a.

If k = 1, then n = 2 and we can take p = 5. For k ≥ 2 we have 1 = pk− (p−1)k ≥ p2− (p−1)2

(this inequality is equivalent to p2(pk−2−1) ≥ (p−1)2((p−1)k−2−1), which is obviously true).

Then 1 ≥ p2 − (p− 1)2 = 2p− 1 ≥ 9, which is absurd.

It follows that the only solution is n = 2.
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