Alternative solution to problem A1

From the inequality between the quadratic mean and the arithmetic mean (or CBS) we have

$$\sqrt{\frac{a^2 + b^2 + 1^2 + 1^2}{4}} \ge \frac{a + b + 1 + 1}{4}$$

We obtain that $\sqrt{a^2 + b^2 + 2} \ge \frac{a + b + 2}{2}$ and two other similar inequalities.

Adding them together, we obtain that

$$\sqrt{a^2 + b^2 + 2} + \sqrt{b^2 + c^2 + 2} + \sqrt{c^2 + a^2 + 2} \ge a + b + c + 3$$

Using the AM-GM inequality and the condition a + b + c + ab + ac + bc + abc = 7 we obtain

$$(a+1) + (b+1) + (c+1) \ge 3\sqrt[3]{(a+1)(b+1)(c+1)} = 6$$

Alternative solution to problem A4

Write the given inequality as $(x + y + z)(xy + yz + zx) - 9xyz \ge 2(x + y + z)$, or $x(y - z)^2 + y(z - x)^2 + z(x - y)^2 \ge 2(x + y + z)$.

Because of the simmetry of the inequality, we may assume x < y < z and consider $a, b \in \mathbb{N}$ such that y = x + a, z = y + b. The last inequality becomes

$$xb^{2} + (x+a)(a+b)^{2} + (x+a+b)a^{2} \ge 2(3x+2a+b).$$
(*)

Except when a = 1, when have $x(b^2 + a^2 + (a+b)^2) \ge 6x$, $a(a+b)^2 \ge 4a$ and $a^2(a+b) \ge 2b$. Adding these three inequalities proves (*). In case a = 1, (*) becomes $xb^2 + (x+1)(1+b)^2 \ge 5x + 3 + b$. This follows from $x(2b^2 + 2b + 1) \ge 5x$ and $b^2 + 2b + 1 \ge b + 3$.

Equality holds when a = b = 1.