From the inequality between the quadratic mean and the arithmetic mean (or CBS) we have

$$
\sqrt{\frac{a^{2}+b^{2}+1^{2}+1^{2}}{4}} \geq \frac{a+b+1+1}{4}
$$

We obtain that $\sqrt{a^{2}+b^{2}+2} \geq \frac{a+b+2}{2}$ and two other similar inequalities.
Adding them together, we obtain that

$$
\sqrt{a^{2}+b^{2}+2}+\sqrt{b^{2}+c^{2}+2}+\sqrt{c^{2}+a^{2}+2} \geq a+b+c+3
$$

Using the AM-GM inequality and the condition $a+b+c+a b+a c+b c+a b c=7$ we obtain

$$
(a+1)+(b+1)+(c+1) \geq 3 \sqrt[3]{(a+1)(b+1)(c+1)}=6
$$

Alternative solution to problem A4
Write the given inequality as $(x+y+z)(x y+y z+z x)-9 x y z \geq 2(x+y+z)$, or $x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} \geq 2(x+y+z)$.
Because of the simmetry of the inequality, we may assume $x<y<z$ and consider $a, b \in \mathbb{N}$ such that $y=x+a, z=y+b$. The last inequality becomes

$$
\begin{equation*}
x b^{2}+(x+a)(a+b)^{2}+(x+a+b) a^{2} \geq 2(3 x+2 a+b) \tag{*}
\end{equation*}
$$

Except when $a=1$, when have $x\left(b^{2}+a^{2}+(a+b)^{2}\right) \geq 6 x, a(a+b)^{2} \geq 4 a$ and $a^{2}(a+b) \geq 2 b$. Adding these three inequalities proves (*).
In case $a=1,(*)$ becomes $x b^{2}+(x+1)(1+b)^{2} \geq 5 x+3+b$. This follows from $x\left(2 b^{2}+2 b+1\right) \geq 5 x$ and $b^{2}+2 b+1 \geq b+3$.
Equality holds when $a=b=1$.

