

CYPRUS MATHEMATICAL SOCIETY C'SELECTION COMPETITION FOR UNDER 15 1/2 YEARS OLD «Euclidis»

Date: 24/03/2018

Time duration: 10:00-14:30

Instructions:

- 1. Solve all the problems showing your work.
- 2. Write with blue or black ink. (You may use pencil for figures)
- 3. Do not use corrector liquid (Tipp-ex).
- 4. Do not use calculators.

<u>Problem 1</u>: If α, β, γ positive real numbers prove that

$$\frac{\alpha^2 \gamma + \hat{\beta})(\beta^2 \alpha + \gamma)(\gamma^2 \beta + \alpha)}{\alpha^2 \beta^2 \gamma^2} \ge 8$$

When holds the equality;

Problem 2: Triangle $\triangle AB\Gamma$ is inscribed in the circle (O, R). Let \triangle be the antidiametric point of A on the circle (O, R). Let \triangle_1 be the symmetric point of \triangle on the line AB and \triangle_2 be the symmetric point of \triangle on the line $A\Gamma$. Let I be the point of intersection of $A\Gamma$ and $B\triangle$, let K be the midpoint of $\triangle_1 \triangle_2$, and let N to be the midpoint of $B\Gamma$. Prove that:

(a) $\angle \Delta_1 AI = \angle \Delta_1 \Delta_2 I$ and

(β) the line through *N* parallel to *A* Δ passes through the midpoint of *AK*.

<u>Problem 3</u>: The positive integers α , β are defined by

$$\alpha = 2^{2018} + 3^{2018} + 4^{2018} + 5^{2018}, \ \beta = \frac{3^{2019} - 3}{2}$$

Determine the units digit of the number $= \alpha^2 + \beta^2 + \alpha\beta$.

<u>Problem 4</u>: We have two piles with 2000 and 2018 coins respectively. Anna and Bob take alternate turns making the following moves: The player whose turn is to move picks a pile with at least two coins, removes from that pile t coins for some $2 \le t \le 4$, and adds to the other pile 1 coin. The players can, if they wish, choose a different t and a different pile at each turn, and the player who cannot make a move loses. If Anna plays first, determine which player has a winning strategy.