

CYPRUS MATHEMATICAL SOCIETY B' SELECTION COMPETITION FOR UNDER 15 1/2 YEARS OLD «Euclidis»

Date: 24/02/2018

Time duration: 10:00-14:30

Instructions:

- 1. Solve all the problems showing your work.
- 2. Write with blue or black ink. (You may use pencil for figures)
- 3. Correction fluid (Tipp-ex) is not permitted.
- 4. Calculators are not permitted.

Problem 1: Consider the set $A_1 = \{v, v + 1, v + 2\}$, where v is an odd number such that v < 2016. We create a sequence $A_1, A_2, ..., A_i, A_{i+1}, ...$ of sets, each having three elements, starting with A_1 and making one of the following choices at each step:

 I^{st} choice: To obtain A_{i+1} , we choose a positive integer, we add it in two elements of A_i i = 1, 2, ...and leave the third element of A_i the same. (For example, if we choose the integer $\kappa \in \mathbb{N}$, then A_2 could be equal to $A_2 = \{\nu + \kappa, \nu + 1 + \kappa, \nu + 2\}$.)

 2^{nd} choice: To obtain A_{i+1} , we choose a positive integer, add it in one of the elements of A_i i = 1, 2, ... subtract it from another one of the elements of A_i , and leave the third element of A_i the same. (For example, if we choose the integer $\mu \in \mathbb{N}$, then A_2 could be equal to $A_2 = \{\nu + \mu, \nu + 1, \nu + 2 - \mu\}$.) Decide if it is possible by using this process to end up after some step with the set $A_i = \{2016, 2017, 2018\}$.

Problem 2: Δ ivovtal ta $\psi \eta \phi$ ia 0,1,2,3,4,5. Determine the sum of all **even** three-digit numbers that can be obtained by using the digits 0,1,2,3,4,5, if repeating the same digit is not allowed.

Problem 3: Let β_i , i = 1, 2, 3, ..., 2018 be positive integers such that

1	1	1	1
$\overline{\beta_1^3}$	$+\frac{\beta_2^3}{\beta_2^3}+$	$\dots + \frac{\beta_{2018}^3}{\beta_{2018}^3} =$	2

Show that:

α) For every integer $\nu > 1$ it holds that: $\frac{1}{\nu^3} < \frac{1}{2} \left(\frac{1}{\nu-1} - \frac{2}{\nu} + \frac{1}{\nu+1} \right)$ β) At least three of the numbers β_i , i = 1, 2, 3, ..., 2018 are equal.

<u>Problem 4</u>: Let $\triangle AB\Gamma$ be an equilateral triangle and let (c) be a circle with centre A and radius AB. We take a point Θ on the arc major $B\Gamma$ of (c) and we draw the chord $B\Theta$. The parallel line to $B\Theta$ passing from point Γ meets (c) at K. Let \triangle, Z, H be the midpoints of the segments $B\Theta, A\Gamma, AK$ respectively. Let Π be a point outside the circle and on the ray $\triangle A$, and let Σ be a point inside the circle such that $\triangle Z\Pi\Sigma$ is a convex quadrilateral with $\Sigma Z = \triangle Z$ and $\angle \triangle \Sigma\Pi = 150^\circ$. Show that: (α) The triangle $Z\Delta H$ is equilateral and (β) $\angle Z\Pi\Delta = \angle \Delta\Pi\Sigma$