CYPRUS MATHEMATICAL SOCIETY
B' SELECTION COMPETITION
FOR UNDER 15 1/2 YEARS OLD
«Euclidis»

Date: 24/02/2018
Time duration: 10:00-14:30

Instructions:

1. Solve all the problems showing your work.
2. Write with blue or black ink. (You may use pencil for figures)
3. Correction fluid (Tipp-ex) is not permitted.
4. Calculators are not permitted.

Problem 1: Consider the set $A_{1}=\{v, v+1, v+2\}$, where v is an odd number such that $v<2016$. We create a sequence $A_{1}, A_{2}, \ldots, A_{i}, A_{i+1}, \ldots$ of sets, each having three elements, starting with A_{1} and making one of the following choices at each step:
$1^{\text {st }}$ choice: To obtain A_{i+1}, we choose a positive integer, we add it in two elements of $A_{i} i=1,2, \ldots$ and leave the third element of A_{i} the same. (For example, if we choose the integer $\kappa \in \mathbb{N}$, then A_{2} could be equal to $A_{2}=\{v+\kappa, v+1+\kappa, v+2\}$.)
$2^{\text {nd }}$ choice: To obtain A_{i+1}, we choose a positive integer, add it in one of the elements of $A_{i} i=1,2, \ldots$ subtract it from another one of the elements of A_{i}, and leave the third element of A_{i} the same. (For example, if we choose the integer $\mu \in \mathbb{N}$, then A_{2} could be equal to $A_{2}=\{v+\mu, v+1, v+2-\mu\}$.) Decide if it is possible by using this process to end up after some step with the set $A_{j}=\{2016,2017,2018\}$.
 can be obtained by using the digits $0,1,2,3,4,5$, if repeating the same digit is not allowed.

Problem 3: Let $\beta_{i}, i=1,2,3, \ldots, 2018$ be positive integers such that

$$
\frac{1}{\beta_{1}^{3}}+\frac{1}{\beta_{2}^{3}}+\cdots+\frac{1}{\beta_{2018}^{3}}=\frac{1}{2}
$$

Show that:
$\alpha)$ For every integer $v>1$ it holds that: $\frac{1}{v^{3}}<\frac{1}{2}\left(\frac{1}{v-1}-\frac{2}{v}+\frac{1}{v+1}\right)$
β) At least three of the numbers $\beta_{i}, i=1,2,3, \ldots, 2018$ are equal.
Problem 4: Let $\triangle A B \Gamma$ be an equilateral triangle and let (c) be a circle with centre A and radius $A B$. We take a point Θ on the arc major $B \Gamma$ of (c) and we draw the chord $B \Theta$. The parallel line to $B \Theta$ passing from point Γ meets (c) at K. Let Δ, Z, H be the midpoints of the segments $B \Theta, A \Gamma, A K$ respectively. Let Π be a point outside the circle and on the ray ΔA, and let Σ be a point inside the circle such that $\Delta Z \Pi \Sigma$ is a convex quadrilateral with $\Sigma Z=\Delta Z$ and $\angle \Delta \Sigma \Pi=150^{\circ}$. Show that:
(α) The triangle $Z \Delta H$ is equilateral and
(β) $\angle Z \Pi \Delta=\angle \Delta \Pi \Sigma$

