XIV GEOMETRICAL OLYMPIAD IN HONOUR OF I.F.SHARYGIN
 The correspondence round

Below is the list of problems for the first (correspondence) round of the XIV Sharygin Geometrical Olympiad.

The olympiad is intended for high-school students of four eldest grades. In Russian school, these are 8-11. In the list below, each problem is indicated by the numbers of Russian school grades, for which it is intended. Foreign students of the last grade have to solve the problems for 11th grade, students of the preceding grade solve the problems for 10th grade etc. However, the participants may solve problems for elder grades as well (solutions of problems for younger grades will not be considered).

A complete solution of each problem costs 7 points. A partial solution costs from 1 to 6 points. A text without significant advancement costs 0 points. The result of a participant is the sum of all obtained marks.

Please include the solution of each problem in a separate file. First write down the statement of the problem, and then the solution. Present your solutions in detail, including all necessary arguments and calculations. Provide all necessary figures of sufficient size. If a problem has an explicit answer, this answer must be presented distinctly. Please, be accurate to provide good understanding and correct estimating of your work !

If your solution depends on some well-known theorems from standard textbooks, you may simply refer to them instead of providing their proofs. However, any fact not from the standard curriculum should be either proved or properly referred (with an indication of the source).

You may note the problems which you liked most (this is not obligatory). Your opinion is interesting for the Jury.

The solutions for the problems (in Russian or in English) must be delivered not before January 8, 2018 and not later than on April 1, 2018. To upload your work, enter the site https://contest.yandex.ru/geomshar/, indicate the language (English) in the right upper part of the page, press "Registration"in the left upper part, and follow the instructions.

Attention:

1. The solution of each problem must be contained in a separate pdf, doc or jpg file. We recommend to prepare the paper using computer or to scan it rather than to photograph it. In the last two cases, please check readability of the file before uploading.
2. If you upload the solution of some problem more than once then only the last version is retained in the checking system. Thus if you need to change something in your solution then you have to upload the whole solution again.

If you have any technical problems with uploading of the work, apply to geomshar@yandex.ru (DON'T SEND your work to this address).

The final round will be held in July-August 2018 in Moscow region. The winners of the correspondence round are invited to it if they don't graduate from school before. (For instance, if the last grade is 12 then we invite winners from $9-11$ grades, and from 12 grade if they finish their education later.) The graduates, winners of the correspondence round, will be awarded by diplomas of the Olympiad. The list of the winners will be published on www.geometry.ru at the end of May 2018 at latest. If you want to know your detailed results, please use e-mail geomshar@yandex.ru.

1. (grade 8) Three circles lie inside a square. Each of them touches externally two remaining
circles. Also each circle touches two sides of the square. Prove that two of these circles are congruent.
2. (grade 8) A cyclic quadrilateral $A B C D$ is given. The lines $A B$ and $D C$ meet at point E, and the lines $B C$ and $A D$ meet at point F. Let I be the incenter of triangle $A E D$, and a ray with origin F be perpendicular to the bisector of angle $A I D$. In which ratio this ray dissects the angle $A F B$?
3. (grade 8) Let $A L$ be the bisector of triangle $A B C, D$ be its midpoint, and E be the projection of D to $A B$. It is known that $A C=3 A E$. Prove that $C E L$ is an isosceles triangle.
4. (grade 8) Let $A B C D$ be a cyclic quadrilateral. A point P moves along the arc $A D$ which does not contain B and C. A fixed line l, perpendicular to $B C$, meets the rays $B P, C P$ at points B_{0}, C_{0} respectively. Prove that the tangent at P to the circumcircle of triangle $P B_{0} C_{0}$ passes through some fixed point.
5. (grades 8-9) The vertex C of equilateral triangles $A B C$ and $C D E$ lies on the segment $A E$, and the vertices B and D lie on the same side with respect to this segment. The circumcircles of these triangles centered at O_{1} and O_{2} meet for the second time at point F. The lines $O_{1} O_{2}$ and $A D$ meet at point K. Prove that $A K=B F$.
6. (grades 8-9) Let $C H$ be the altitude of a right-angled triangle $A B C\left(\angle C=90^{\circ}\right)$ with $B C=2 A C$. Let O_{1}, O_{2} and O be the incenters of triangles $A C H, B C H$ and $A B C$ respectively, and H_{1}, H_{2}, H_{0} be the projections of O_{1}, O_{2}, O respectively to $A B$. Prove that $H_{1} H=H H_{0}=H_{0} H_{2}$.
7. (grades 8-9) Let E be a common point of circles w_{1} and w_{2}. Let $A B$ be a common tangent to these circles, and $C D$ be a line parallel to $A B$, such that A and C lie on w_{1}, B and D lie on w_{2}. The circles $A B E$ and $C D E$ meet for the second time at point F. Prove that F bisects one of arcs $C D$ of circle $C D E$.
8. (grades 8-9) Restore a triangle $A B C$ by the Nagel point, the vertex B and the foot of the altitude from this vertex.
9. (grades 8-9) A square is inscribed into an acute-angled triangle: two vertices of this square lie on the same side of the triangle and two remaining vertices lies on two remaining sides. Two similar squares are constructed for the remaining sides. Prove that three segments congruent to the sides of these squares can be the sides of an acute-angled triangle.
10. (grades 8-9) In the plane, 2018 points are given such that all distances between them are different. For each point, mark the closest one of the remaining points. What is the minimal number of marked points?
11. (grades 8-9) Let I be the incenter of a nonisosceles triangle $A B C$. Prove that there exists a unique pair of points M, N lying on the sides $A C, B C$ respectively, such that $\angle A I M=\angle B I N$ and $M N \| A B$.
12. (grades 8-9) Let $B D$ be the external bisector of a triangle $A B C$ with $A B>B C ; K$ and K_{1} be the touching points of side $A C$ with the incicrle and the excircle centered at I and
I_{1} respectively. The lines $B K$ and $D I_{1}$ meet at point X, and the lines $B K_{1}$ and $D I$ meet at point Y. Prove that $X Y \perp A C$.
13. (grades $9-11$) Let $A B C D$ be a cyclic quadrilateral, and M, N be the midpoints of arcs $A B$ and $C D$ respectively. Prove that $M N$ bisects the segment between the incenters of triangles $A B C$ and $A D C$.
14. (grades 9-11) Let $A B C$ be a right-angled triangle with $\angle C=90^{\circ}, K, L, M$ be the midpoints of sides $A B, B C, C A$ respectively, and N be a point of side $A B$. The line $C N$ meets $K M$ and $K L$ at points P and Q respectively. Points S, T lying on $A C$ and $B C$ respectively are such that $A P Q S$ and $B P Q T$ are cyclic quadrilaterals. Prove that
a) if $C N$ is a bisector, then $C N, M L$ and $S T$ concur;
b) if $C N$ is an altitude, then $S T$ bisects $M L$.
15. (grades 9-11) The altitudes $A H_{1}, B H_{2}, C H_{3}$ of an acute-angled triangle $A B C$ meet at point H. Points P and Q are the reflections of H_{2} and H_{3} with respect to H. The circumcircle of triangle $P H_{1} Q$ meets for the second time $B H_{2}$ and $C H_{3}$ at points R and S. Prove that $R S$ is a medial line of triangle $A B C$.
16. (grades 9-11) Let $A B C$ be a triangle with $A B<B C$. The bisector of angle C meets the line parallel to $A C$ and passing through B, at point P. The tangent at B to the circumcircle of $A B C$ meets this bisector at point R. Let R^{\prime} be the reflection of R with respect to $A B$. Prove that $\angle R^{\prime} P B=\angle R P A$.
17. (grades 10-11) Let each of circles α, β, γ touches two remaining circles externally, and all of them touche a circle Ω internally at points A_{1}, B_{1}, C_{1} respectively. The common internal tangent to α and β meets the arc $A_{1} B_{1}$ not containing C_{1} at point C_{2}. Points A_{2}, B_{2} are defined similarly. Prove that the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ concur.
18. (grades 10-11) Let C_{1}, A_{1}, B_{1} be points on sides $A B, B C, C A$ of triangle $A B C$, such that $A A_{1}, B B_{1}, C C_{1}$ concur. The rays $B_{1} A_{1}$ and $B_{1} C_{1}$ meet the circumcircle of the triangle at points A_{2} and C_{2} respectively. Prove that A, C, the common point of $A_{2} C_{2}$ and $B B_{1}$ and the midpoint of $A_{2} C_{2}$ are concyclic.
19. (grades 10-11) Let a triangle $A B C$ be given. On a ruler three segment congruent to the sides of this triangle are marked. Using this ruler construct the orthocenter of the triangle formed by the tangency points of the sides of $A B C$ with its incircle.
20. (grades 10-11) Let the incircle of a nonisosceles triangle $A B C$ touch $A B, A C$ and $B C$ at points D, E and F respectively. The corresponding excircle touches the side $B C$ at point N. Let T be the common point of $A N$ and the incircle, closest to N, and K be the common point of $D E$ and $F T$. Prove that $A K \| B C$.
21. (grades 10-11) In the plane a line l and a point A outside it are given. Find the locus of the incenters of acute-angled triangles having a vertex A and an opposite side lying on l.
22. (grades 10-11) Six circles of unit radius lie in the plane so that the distance between the centers of any two of them is greater than d. What is the least value of d such that there always exists a straight line which does not intersect any of the circles and separates the circles into two groups of three?
23. (grades $10-11$) The plane is divided into convex heptagons with diameters less than 1. Prove that an arbitrary disc with radius 200 intersects most than a billion of them.
24. (grades 10-11) A crystal of pyrite is a parallelepiped with dashed faces.

The dashes on any two adjacent faces are perpendicular. Does there exist a convex polytope with the number of faces not equal to 6 , such that its faces can be dashed in such a manner?

