

Ниєроиๆvía: 13/01/2018

«Evк $\lambda \varepsilon i ́ \delta \eta \rho^{\prime}$ "
$\Omega \rho \alpha \varepsilon \xi \varepsilon ́ \tau \alpha \sigma \eta \varsigma: 10: 00-14: 30$
INSTRUCTIONS:

1. Solve all the problems justifying fully your answers.
2. Write using blue or black ink. (Figures can be drawn using a pencil)
3. Correction fluid is not permitted.
4. Calculators are not permitted.

Problem 1: A school has 218 students. A survey at the school found out that:
i. 140 students have a bicycle,
ii. 159 students have a mobile phone,
iii. 181 students have a soccer ball, and
iv. 176 students have a PC.

How many of the students definitely have a bicycle, and a mobile phone, and a soccer ball, and a PC?

Problem 2: Let

$$
A=\frac{\mu}{v}+\frac{14 v}{9 \mu}
$$

where μ and v are relatively prime positive integers. Determine all pairs (μ, v) for which A is an integer.

Problem 3: Let $\triangle A B \Gamma$ be an isosceles triangle with $\Gamma A=\Gamma B$. Let $\left(\delta_{1}\right)$ and $\left(\delta_{2}\right)$ be the bisectors of angles $\angle \Gamma A B$ and $\angle \Gamma B A$ respectively. From vertex Γ, we drop perpendicular lines $\left(\varepsilon_{1}\right)$ and $\left(\varepsilon_{2}\right)$ on $\left(\delta_{1}\right)$ and $\left(\delta_{2}\right)$ which meet the bisectors $\left(\delta_{1}\right),\left(\delta_{2}\right)$ at Z, H respectively. Let Θ, I be the points of intersection of $\left(\varepsilon_{1}\right)$ and $\left(\varepsilon_{2}\right)$ with the line $A B$ respectively. If K, N are the midpoints of the segments ΘH and $I Z$ respectively, prove that:
(α) The quadrilateral $Z H I \Theta$ is an isosceles trapezium.
(β) $(\Gamma K N)=(Z K N H)$
Note: With (T), we denote the area of figure T.
Problem 4: Let α, β be real numbers such that

$$
\alpha^{3}+\beta^{3}+9 \alpha \beta=27
$$

Determine all possible values of $\Sigma=\alpha+\beta$.

