ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ

Α΄ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΚΑΤΩ ΤΩΝ 15 1/2 ΕΤΩΝ

«Ευκλείδης»

Ημερομηνία: 13/01/2018

Ώρα εξέτασης: 10:00-14:30

INSTRUCTIONS:

- 1. Solve all the problems justifying fully your answers.
- 2. Write using blue or black ink. (Figures can be drawn using a pencil)
- 3. Correction fluid is not permitted.
- 4. Calculators are not permitted.

Problem 1: A school has 218 students. A survey at the school found out that:

- i. 140 students have a bicycle,
- ii. 159 students have a mobile phone,
- iii. 181 students have a soccer ball, and
- iv. 176 students have a PC.

How many of the students definitely have a bicycle, and a mobile phone, and a soccer ball, and a PC?

Problem 2: Let

$$A = \frac{\mu}{\nu} + \frac{14\nu}{9\mu}$$

where μ and ν are relatively prime positive integers. Determine all pairs (μ , ν) for which *A* is an integer.

Problem 3: Let $\triangle AB\Gamma$ be an isosceles triangle with $\Gamma A = \Gamma B$. Let (δ_1) and (δ_2) be the bisectors of angles $\angle \Gamma AB$ and $\angle \Gamma BA$ respectively. From vertex Γ , we drop perpendicular lines (ε_1) and (ε_2) on (δ_1) and (δ_2) which meet the bisectors $(\delta_1), (\delta_2)$ at Z, H respectively. Let Θ, I be the points of intersection of (ε_1) and (ε_2) with the line AB respectively. If K, N are the midpoints of the segments ΘH and IZ respectively, prove that:

(a) The quadrilateral ZHI Θ is an isosceles trapezium.

$$(\beta) (\Gamma KN) = (ZKNH)$$

<u>Note:</u> With (T), we denote the area of figure T.

Problem 4: Let α , β be real numbers such that $\alpha^3 + \beta^3 + 9\alpha\beta = 27$ Determine all possible values of $\Sigma = \alpha + \beta$.