
Another solution to problem 2

When I first saw the problem I thought that the key to solving it was to exploit
the fact that the numbers were distinct integers.
The inequality can be written equivalently (x + y + z)(xy + yz + zx) ≥ 9xyz +
2(x + y + z). If x, y, z were just some positive real numbers, not subjected to any
constraint, we would only have (x + y + z)(xy + yz + zx) ≥ 9xyz (with equality
when x = y = z). I thought that maybe I should consider the proof of this last
equality and adapt it somehow to our context. We have

(x + y + z)(xy + yz + zx) ≥ 9xyz ⇔ x(y − z)2 + y(z − x)2 + z(x− y)2 ≥ 0.

So what we actually need to prove is x(y−z)2 +y(z−x)2 +z(x−y)2 ≥ 2(x+y+z)
whenever x, y, z are distinct positive integers.
It is clear that this is true in the case when (y−z)2 ≥ 2, (z−x)2 ≥ 2, (x−y)2 ≥ 2,
i.e. when no two of the numbers are consecutive.
This motivates considering cases when some of the numbers are consecutive.

A slightly different approach is to profit of the simmetry of the inequality. We can
assume a certain order between the variables, say x < y < z.
A standard continuation, one that allows exploiting the fact that the variables
differ by at least 1, is to put a = y − x and b = z − y. We have a and b
positive integers and y = x + a, z = x + a + b. In these terms, the last in-
equality comes to xb2 + (x + a)(a + b)2 + (x + a + b)a2 ≥ 2(3x + 2a + b), i.e. to
x
(
a2 + b2 + (a + b)2 − 6

)
+ a

(
(a + b)2 + a2 − 4

)
+ b(a2 − 2) ≥ 0. All the terms are

non-negative and the last one is positive if a > 1, so the inequality is fulfilled with
no equality cases.
It remains to study the case when a = 1.
In this case, the above inequality becomes x

(
2b2 + 2b− 4

)
+ (b2 + b− 2) ≥ 0. Both

terms are non-negative and equal to 0 if and only if b = 1, so the inequality is
proven. We have equality if and only if b = 1 (and a = 1), i.e. when the three
numbers are consecutive.


