Another solution to problem 2

When I first saw the problem I thought that the key to solving it was to exploit the fact that the numbers were distinct integers.
The inequality can be written equivalently $(x+y+z)(x y+y z+z x) \geq 9 x y z+$ $2(x+y+z)$. If x, y, z were just some positive real numbers, not subjected to any constraint, we would only have $(x+y+z)(x y+y z+z x) \geq 9 x y z$ (with equality when $x=y=z$). I thought that maybe I should consider the proof of this last equality and adapt it somehow to our context. We have

$$
(x+y+z)(x y+y z+z x) \geq 9 x y z \Leftrightarrow x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} \geq 0
$$

So what we actually need to prove is $x(y-z)^{2}+y(z-x)^{2}+z(x-y)^{2} \geq 2(x+y+z)$ whenever x, y, z are distinct positive integers.
It is clear that this is true in the case when $(y-z)^{2} \geq 2,(z-x)^{2} \geq 2,(x-y)^{2} \geq 2$, i.e. when no two of the numbers are consecutive.

This motivates considering cases when some of the numbers are consecutive.
A slightly different approach is to profit of the simmetry of the inequality. We can assume a certain order between the variables, say $x<y<z$.
A standard continuation, one that allows exploiting the fact that the variables differ by at least 1 , is to put $a=y-x$ and $b=z-y$. We have a and b positive integers and $y=x+a, z=x+a+b$. In these terms, the last inequality comes to $x b^{2}+(x+a)(a+b)^{2}+(x+a+b) a^{2} \geq 2(3 x+2 a+b)$, i.e. to $x\left(a^{2}+b^{2}+(a+b)^{2}-6\right)+a\left((a+b)^{2}+a^{2}-4\right)+b\left(a^{2}-2\right) \geq 0$. All the terms are non-negative and the last one is positive if $a>1$, so the inequality is fulfilled with no equality cases.
It remains to study the case when $a=1$.
In this case, the above inequality becomes $x\left(2 b^{2}+2 b-4\right)+\left(b^{2}+b-2\right) \geq 0$. Both terms are non-negative and equal to 0 if and only if $b=1$, so the inequality is proven. We have equality if and only if $b=1$ (and $a=1$), i.e. when the three numbers are consecutive.

