Another solution to problem 2

When I first saw the problem I thought that the key to solving it was to exploit
the fact that the numbers were distinct integers.

The inequality can be written equivalently (z 4+ y + 2)(xy + yz + zz) > 9zyz +
2(x +y+2). If z,y, z were just some positive real numbers, not subjected to any
constraint, we would only have (x + y + 2)(xy + yz + zz) > 9zyz (with equality
when © = y = z). I thought that maybe I should consider the proof of this last
equality and adapt it somehow to our context. We have

(x+y+2)(vy +yz+22) > 92yz & 2(y — 2)> +y(z — 2)* + 2(z — y)* > 0.

So what we actually need to prove is x(y — 2)* +y(z —x)* + 2(z —y)* > 2(x+y+2)
whenever x,y, z are distinct positive integers.

It is clear that this is true in the case when (y—2)* > 2, (z —2)* > 2, (x —y)? > 2,
i.e. when no two of the numbers are consecutive.

This motivates considering cases when some of the numbers are consecutive.

A slightly different approach is to profit of the simmetry of the inequality. We can
assume a certain order between the variables, say z < y < z.

A standard continuation, one that allows exploiting the fact that the variables
differ by at least 1, is to put @ = y — 2z and b = z —y. We have a and b
positive integers and y = x +a, 2z = x + a + b. In these terms, the last in-
equality comes to zb* + (x + a)(a + b)* + (z + a + b)a* > 2(3z + 2a + b), i.e. to
z(a? + b+ (a+b)? —6) +a((a+b)* + a® — 4) + b(a* — 2) > 0. All the terms are
non-negative and the last one is positive if a > 1, so the inequality is fulfilled with
no equality cases.

It remains to study the case when a = 1.

In this case, the above inequality becomes z (20 +2b—4) + (b* + b —2) > 0. Both
terms are non-negative and equal to 0 if and only if b = 1, so the inequality is
proven. We have equality if and only if b = 1 (and a = 1), i.e. when the three
numbers are consecutive.



