Alternative solution to problem 3 (Official solution no. 3)
Since $\angle B Q C=\angle B T C=180^{\circ}-\angle B A C$, the quadrilateral $B C T Q$ is cyclic. Hence the lines $Q T, B C$ and $X E$ are concurrent as radical axes of Γ and the circumcircles of quadrilaterals $B C T Q$ and $Q X E T$. As in Solution 1 we can prove the fact that E and T are symmetric with respect to the line $B C$. Thus the lines $X E$ and $Q T$ and respectively the points Q and X are symmetric with respect to $B C$.
It remains to observe that $\angle C X M=\angle C Q M=\angle C B A$ and $\angle C X A=\angle C B A$ and we infer that X, M and A are collinear.

