

CYPRUS MATHEMATICAL SOCIETY A' SELECTION COMPETITION FOR UNDER 15 1/2 YEARS OLD

«Euclidis»

Date: 09/02/2013 Time duration: 10:00-14:30

Instructions:

1. Solve all the problems showing your work .

- 2. Write with blue or black ink . (You may use pencil for figures)
- 3. Do not use corrector liquid (Tipp-ex).
- 4. Do not use calculators

<u>Problem 1</u>: If α, β, γ are rational numbers such that $\alpha \neq \beta \neq \gamma \neq \alpha$, prove that $A = \frac{1}{(\alpha - \beta)^2} + \frac{1}{(\beta - \gamma)^2} + \frac{1}{(\gamma - \alpha)^2}$ is a perfect square of rational number.

Problem 2: 2013 real numbers are written in a row. If α, β, γ are three consecutive ones, then $\beta = \frac{2\alpha\gamma}{\alpha+\gamma}$. The first number is $\frac{1}{10}$ and the last one is $\frac{1}{603}$.

Find the 1001st number.

Problem 3: Given a triangle with $\angle A = 60^{\circ}$. We draw its bisectors $B\Delta$ and ΓE . Prove that $BE + \Gamma \Delta = B\Gamma$.

Problem 4: Let α, β, ν are positive integers and suppose that $B = \nu^{\beta} + 1$, $A = \nu^{\alpha} + 1$. Prove that the number A is divisible by the number B if and only if there exists odd number k, such that $\alpha = k\beta$.