CYPRUS MATHEMATICAL SOCIETY

B' SELECTION COMPETITION

FOR UNDER 15 1/2 YEARS OLD

## «Euclidis»

Date: 13/03/2010
Time duration: 10:00-14:30

## Instructions:

1. Solve all the problems showing your work .
2. Write with blue or black ink . (You may use pencil for figures)
3. Do not use corrector liquid (Tipp-ex).
4. Do not use calculators

Problem 1: Find all integers $v \neq 3$ for which the number $v-3$ divides the number $v^{3}-3$.

Problem 2: In a triangle $A B \Gamma$ the angle $\angle A=45^{\circ}, M$ is the midpoint of $B \Gamma$ and $B \Delta, \Gamma E$ the heights of the triangle. Prove that the triangle $\triangle M E$ is a right triangle and isosceles.

Problem 3: Find the real numbers $x, y, z$ for which satisfy the following equation

$$
x^{2}+y^{2}+z^{2}+x y+y z+z x+\frac{3}{2}=2(x+y+z)
$$

Problem 4: A triangle $A B \Gamma$ is given.
a) In the inner part of the side $A \Gamma$ we take $v$ different points $B_{1}, B_{2}, \ldots, B_{v}$ and in inner part of the side $A B$ we take also $v$ Different points $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{v}$. Show that the $2 v$ line segments $B B_{i}$ and $\Gamma \Gamma_{i}, i=1,2,3, \ldots, v$, divide the inner part of the triangle in $(v+1)^{2}$ regions.
b) In the inner part of the side $B \Gamma$ we chose the point $\Omega$ such that the $A \Omega$ and any two of the segments $B B_{i}$ and $\Gamma \Gamma_{i}, i=1,2,3, \ldots, v$, are not passing through the same point. Find the number of regions that are formed in the inner part of the triangle from all the segments above $B B_{i}$ and $\Gamma \Gamma_{i}$ and $A \Omega$.

