

CYPRUS MATHEMATICAL SOCIETY

B' SELECTION COMPETITION

FOR UNDER 15 1/2 YEARS OLD

«Euclidis»

	Date: 13/03/2010	Time duration: 10:00-14:30
Instructions:		
1.	Solve all the problems showing your work .	
2.	Write with blue or black ink . (You may use pencil for figures)	
•		

- 3. Do not use corrector liquid (Tipp-ex).
- 4. Do not use calculators

<u>Problem 1</u>: Find all integers $\nu \neq 3$ for which the number $\nu - 3$ divides the number $\nu^3 - 3$.

<u>Problem 2</u>: In a triangle $AB\Gamma$ the angle $\angle A = 45^{\circ}$, *M* is the midpoint of $B\Gamma$ and $B\Delta$, ΓE the heights of the triangle. Prove that the triangle ΔME is a right triangle and isosceles.

<u>Problem 3</u>: Find the real numbers x, y, z for which satisfy the following equation

$$x^{2} + y^{2} + z^{2} + xy + yz + zx + \frac{3}{2} = 2(x + y + z)$$

<u>Problem 4</u>: A triangle $AB\Gamma$ is given.

a) In the inner part of the side $A\Gamma$ we take ν different points $B_1, B_2, ..., B_{\nu}$ and in inner part of the side AB we take also ν Different points $\Gamma_1, \Gamma_2, ..., \Gamma_{\nu}$. Show that the 2ν line segments BB_i and $\Gamma\Gamma_i$, $i = 1, 2, 3, ..., \nu$, divide the inner part of the triangle in $(\nu + 1)^2$ regions.

b) In the inner part of the side $B\Gamma$ we chose the point Ω such that the $A\Omega$ and any two of the segments BB_i and $\Gamma\Gamma_i$, $i = 1,2,3, ..., \nu$, are not passing through the same point. Find the number of regions that are formed in the inner part of the triangle from all the segments above BB_i and $\Gamma\Gamma_i$ and $A\Omega$.