CYPRUS MATHEMATICAL SOCIETY

B' SELECTION COMPETITION
FOR UNDER 15 1/2 YEARS OLD

«Euclidis»

Date: 13/02/2010
Time duration: 10:00-14:30

Instructions:

1. Solve all the problems showing your work .
2. Write with blue or black ink . (You may use pencil for figures)
3. Do not use corrector liquid (Tipp-ex).
4. Do not use calculators

Problem 1 : Find the smallest positive integer, which can be written as a sum of 9,10 and 11 consecutive positive integers.

Problem 2: The following numbers are given:

$$
A=\underbrace{888}_{2009-\text { digits }} \ldots 8=\underbrace{444 \ldots 4}_{2009-\text { digits }}, \Gamma=\underbrace{333 \ldots 3}_{2008-\text { digits }} \text {, and } \Delta=\underbrace{666 \ldots 67}_{2008-\text { digits }} \text {. Compare the }
$$

products $X=A \cdot \Gamma$ and $\Psi=B \cdot \Delta$ and find the difference $|X-\Psi|$.

Problem 3: Find all the integer solutions of the equation:

$$
\frac{4 x+y+4 \sqrt{x y}+48}{2 \sqrt{x}+\sqrt{y}}=14
$$

Problem 4: A circle with centre O and radius R is given. Let $A B$ a diameter of the circle and Γ an arbitrary point of the circle. From the point Γ we draw a perpendicular to $A B$ and we let Δ the point of its intersection with the diameter. With centre at Γ and radius $\Gamma \Delta$, we draw a circle that meets the previous circle at the points E and Z. Prove that:
α) The line segment $E Z$ intersects the line segment $\Gamma \Delta$ at its midpoint.
β) The triangles $E \Gamma Z$ and $E \Delta Z$ have equal areas.

