CYPRUS MATHEMATICAL SOCIETY

B' SELECTION COMPETITION

FOR UNDER 15 1/2 YEARS OLD
«Euclidis»

Date: 4/03/2017
Time duration: 10:00-14:30

Instructions:

1. Solve all the problems showing your work.
2. Write with blue or black ink. (You may use pencil for figures)
3. Correction fluid (Tipp-ex) is not permitted.
4. Calculators are not permitted.

Problem 1: Given $\alpha, \beta, \gamma \in \mathbb{R}$ such that

$$
\alpha+\beta+\gamma=2017 \quad \kappa \alpha \iota \quad \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=3
$$

Prove that at least one of the numbers

$$
\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}, \quad \frac{\beta^{2}+\gamma^{2}}{\beta \gamma}, \quad \frac{\gamma^{2}+\alpha^{2}}{\alpha \gamma}
$$

is greater than or equal to 2016 .

Problem 2: Find all the pairs of integers (α, β) satisfying the equation

$$
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{2017}
$$

Problem 3: Consider an obtuse triangle $\triangle A B \Gamma$ with $\angle A \Gamma B>90^{\circ}$ inscribed in a circle (O, R). Draw the altitude ΓK of the triangle and let Δ be the second point where the line ΓK meets the circle (O, R). Through the point Δ draw the perpendicular to the line ΓB, which intersect the line $A B$ at Z. Prove that:
$\alpha)$ The perpendicular from B to ΓZ passes through the point Δ.
乃) $\Gamma A=\Gamma Z$
ز) $K A^{2}+K B^{2}+K \Gamma^{2}+K \Delta^{2}=4 R^{2}$

Problem 4: Andreas, Vasilis, George, Dimitris and Efthimios are exchanging passes with a ball under the following rules:

- Vasilis and George never exchange passes with each other.
- Dimitris never passes the ball to Efthimios but Efthimios might pass the ball to Dimitris.
- Efthimios never passes the ball to Andreas but Andreas might pass the ball to Efthimios.

Find the number of ways the above boys can exchange five passes, given that the ball starts from Andreas and comes back to Andreas after the $5^{\text {th }}$ pass. For example one way is the following:

Andreas \mapsto George \mapsto Andreas \mapsto Vasilis \mapsto Dimitris \mapsto Andreas
Note: It has to be taken for granted that nobody passes the ball to himself.

