"DIFFICULT-EASY PROBLEMS" FROM GEOMETRY

Part 2

Problem 1. Prove that the given angles are equal.

Problem 2. Find the total sum of the coloured angles.

Problem 4. Point C is marked in segment $A B$. Squares $A C E D$ and $C B F G$ are constructed (in the same half of plane). Prove that the point of intersection of $A E$ and $B G$ belongs to segment $D F$.

Problem 5. In square $A B C D, E$ and F are the midpoints of sides $B C$ and $C D$ respectively. If P is the point of intersection of $A E$ and $B F$ prove:
(a) $P D=A D$;
(b) $\angle A E D=\angle A D P$;

(c) $\angle A P C=\angle B P C=135^{\circ}$.

Problem 6. $A B C$ is isosceles triangle with $\angle A=\angle C=$ 80°. Points D is marked on side $B A$ so that $B D=A C$. Determine the value of $\angle D C A$.

Problem 7. In triangle $A B C, \angle A=45^{\circ}$ and $\angle B=15^{\circ}$. Point M is chosen on extension of side $A C$ (through point $C)$ so that $M C=2 A C$. Determine the value of $\angle A M B$.

Problem 8. In triangle $A B C, \angle B=100^{\circ}$ and $\angle C=$ 65°. Points D and E are marked on sides $A B$ and $B C$ respectively so that $\angle D C B=55^{\circ}$ and $\angle E B C=80^{\circ}$. Determine the value of $\angle E D C$.

Problem 9. Point K is marked on side $B C$ of triangle $A B C$ so that $B K=2 K C$. Given that $\angle A C B=45^{\circ}, \angle A K B=60^{\circ}$, determine a value of $\angle A B C$.

Problem 10. Triangle $A B C$ is isosceles $(A B=B C)$ and $\angle A B C=96^{\circ}$. Point P is marked in interior of $A B C$ so that $\angle A C P=30^{\circ}$ while $\angle P A C=18^{\circ}$. What is a value of $\angle B P A$?

Problem 11. $A B C$ is isosceles triangle with $\angle A=$ $\angle C=80^{\circ}$. Points D and E are marked on sides $A B$ and $B C$ respectively so that $\angle A C D=60^{\circ}$ and $\angle C A E=$ 70°. Define the value of $\angle D E A$.

Problem 12. In triangle $A B C, \angle A B C=70^{\circ}$ and $\angle A C B=$ 50°. Point D and E are chosen on sides $A B$ and $A C$ respectively so that $\angle D C B=40^{\circ}$ while $\angle E B C=50^{\circ}$. What is a value of $\angle E D C$?

