"DIFFICULT-EASY PROBLEMS" FROM GEOMETRY Part 2

Problem 1. Prove that the given angles are equal.

Problem 2. Find the total sum of the coloured angles.

Problem 3. Prove that $\angle MAN = \angle BKM$

Problem 4. Point C is marked in segment AB. Squares ACED and CBFG are constructed (in the same half of plane). Prove that the point of intersection of AE and BG belongs to segment DF.

Problem 5. In square ABCD, E and F are the midpoints of sides BC and CD respectively. If P is the point of intersection of AE and BF prove:

- (a) PD = AD;
- (b) $\angle AED = \angle ADP;$
- (c) $\angle APC = \angle BPC = 135^{\circ}$.

Problem 6. ABC is isosceles triangle with $\angle A = \angle C = 80^{\circ}$. Points *D* is marked on side *BA* so that BD = AC. Determine the value of $\angle DCA$.

Problem 7. In triangle ABC, $\angle A = 45^{\circ}$ and $\angle B = 15^{\circ}$. Point M is chosen on extension of side AC (through point C) so that MC = 2AC. Determine the value of $\angle AMB$.

Problem 8. In triangle ABC, $\angle B = 100^{\circ}$ and $\angle C = 65^{\circ}$. Points D and E are marked on sides AB and BC respectively so that $\angle DCB = 55^{\circ}$ and $\angle EBC = 80^{\circ}$. Determine the value of $\angle EDC$.

Problem 9. Point K is marked on side BC of triangle ABC so that BK = 2KC. Given that $\angle ACB = 45^{\circ}$, $\angle AKB = 60^{\circ}$, determine a value of $\angle ABC$.

Problem 10. Triangle ABC is isosceles (AB = BC) and $\angle ABC = 96^{\circ}$. Point P is marked in interior of ABC so that $\angle ACP = 30^{\circ}$ while $\angle PAC = 18^{\circ}$. What is a value of $\angle BPA$?

Problem 11. ABC is isosceles triangle with $\angle A = \angle C = 80^{\circ}$. Points D and E are marked on sides AB and BC respectively so that $\angle ACD = 60^{\circ}$ and $\angle CAE = 70^{\circ}$. Define the value of $\angle DEA$.

Problem 12. In triangle ABC, $\angle ABC = 70^{\circ}$ and $\angle ACB = 50^{\circ}$. Point *D* and *E* are chosen on sides *AB* and *AC* respectively so that $\angle DCB = 40^{\circ}$ while $\angle EBC = 50^{\circ}$. What is a value of $\angle EDC$?

