Problems and Solutions, JBMO 2014

Problem 1. Find all distinct prime numbers p, q and r such that

3p' —5¢" —4r* =26.

Solution. First notice that if both primes ¢ and r differ from 3, then ¢® = * = 1(mod 3),

hence the left hand side of the given equation is congruent to zero modulo 3, which is

impossible since 26 is not divisible by 3. Thus, ¢ =3 or » =3 . We consider two cases.

Case 1. ¢ = 3.
The equation reduces to 3p* — 4r° = 431 (1)

If p=b5, by Fermat’s little theorem, p*'=1(mod5), which yields
3—4r> =1 (mod 5), or equivalently, 7*+2=0 (mod 5). The last congruence is

impossible in view of the fact that a residue of a square of a positive integer belongs to the

set { 0,1,4}. Therefore p =5 and r =19 .

Case 2. r = 3.

The equation becomes 3p* — 5¢* = 62 (2)

Obviously p = 5. Hence, Fermat’s little theorem gives p* =1 (mod 5). But then
5¢' =1 (mod 5) , which is impossible .

Hence, the only solution of the given equation is p =5, ¢ =3, r=19.



Problem 2. Consider an acute triangle ABC with area S. Let CD L AB (D€ AB),
DM 1 AC (MecAC) and DN L BC (N e€BC). Denote by H —and H,  the
orthocentres of the triangles MNC and MND respectively. Find the area of the
quadrilateral AH BH, in terms of S.

Solution 1. Let O, P, K, R and T be the
mid-points of the segments CD, MN,
CN, CH, and MH_ , respectively. From

AMNC we have that ﬁ = %M_C and

PK | MC' . Analogously, from AMHC

we  have  that EB = %M_C and

TR | MC . Consequently, PK = TR and
PK||TR. Also OK| DN (from
ACDN ) and since DN L BC and MH 1 BC, it follows that TH, || OK. Since O is the
circumcenter of ACMN, OP L MN . Thus, CH, L MN implies OP || CH . We conclude

H,

ATRH = AKPO (they have parallel sides and TR = ﬁ), hence RH, = %, ie.
CH, = 2P0 and CH, || PO .

Analogously, D_H2 —9PO and DH, || PO . From C—H1 — 2P0 = D_H2 and
CH || PO | DH, the quadrilateral CH H,D is a parallelogram, thus ﬁ:C—D and
HH,|CD. Therefore  the area  of  the  quadrilateral AH BH, is
AB.HA  AB.CD
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Solution 2. Since MH |DN and NH ||DM, MDNH, is a parallelogram. Similarly,

NH, ||CM and MH, ||CN imply MCNH, is a parallelogram . Let P be the midpoint of
the segment MN . Then o, (D) = H and o, (C’) = H,, thus CD | H H, and CD = HH, .

From CD 1 AB we deduce A :%E-C_D:S.

=S .

AH,BH,



Problem 3. Let a,b,c be positive real numbers such that abc = 1. Prove that
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When does equality hold?
Solution 1. By using AM-GM (2° + ¢° + 2° > 2y + yz + 21 ) we have
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Notice that by AM-GM we have ab + 2 > 2b, be —i—% > 2¢, and ca + e > 2a.
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The equality holds if and only if a =b=c =1.

Solution 2. From QM-AM we obtain
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From AM-GM we have 1 + 1 + 1 > 313/% = 3 , and substituting in (1) we get
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The equality holds if and only if a =b=c =1.

Solution 3.

By using 2* +9* +2° > xy +yz + 2x
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The equality holds if and only if a =b=c¢ =1.
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Equality holds when x =y =2,ie,a=b=c=1.
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Solution 5. Z(a + 3)2 > 32(1 +3
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Using (1) and (2) we obtain
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Equality holds when a =b=c=1.
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Problem 4. For a positive integer n , two players A and B play the following game: Given
a pile of s stones, the players take turn alternatively with A going first. On each turn the
player is allowed to take either one stone, or a prime number of stones, or a multiple of n
stones. The winner is the one who takes the last stone. Assuming both A and B play

perfectly, for how many values of s the player A cannot win?

Solution. Denote by k£ the sought number and let {sl,s,z,...,sk} be the corresponding values

for s. We call each s a losing number and every other nonnegative integer a winning

numbers.
Clearly every multiple of n is a winning number.

Suppose there are two different losing numbers s, > S, which are congruent modulo n .
Then, on his first turn of play, player A may remove s — s, stones (since n‘si —s],),
leaving a pile with s, stones for B. This is in contradiction with both s and s, being

losing numbers.

Hence, there are at most n — 1 losing numbers, i.e. £ <n —1.

Suppose there exists an integer r € {1, 2,...,m — 1}, such that mn +r is a winning number
for every m € N . Let us denote by u the greatest losing number (if £>0) or 0 (if
k=0), and let s= LCM(2,3,...,u +n+ 1). Note that all the numbers s+2, s+ 3, ...,
s+u+n+1 are composite. Let m'eN, be such that
stu+2<m'n+r<s4+wu-+n-+1.In order for m'n +r to be a winning number, there
must exist an integer p, which is either one, or prime, or a positive multiple of n, such
that m'n +r — p is a losing number or 0, and hence lesser than or equal to u. Since
s+2<m'n+r—u<p<m'n+r<s+u+n+1, p must be a composite, hence p is a
multiple of n (say p=g¢n). But then m'n+r—p= (m'— q)n +r must be a winning
number, according to our assumption. This contradicts our assumption that all numbers

mn +r, m €N  are winning.
Hence, each nonzero residue class modulo n contains a loosing number.

There are exactly n —1 losing numbers .



Lemma: No pair (u,n) of positive integers satisfies the following property:
(*)  In Nexists an arithmetic progression (a,), with difference n such that each
segment

[ai —u,a, + u] contains a prime.

Proof of the lemma: Suppose such a pair (u,n) and a corresponding arithmetic

progression (a,)* exist. In N exist arbitrarily long patches of consecutive composites.

Take such a patch P of length 3un. Then, at least one segment [ai —u,a, +u| is fully

contained in P, a contradiction.

Suppose such a nonzero residue class modulo n exists (hence n >1). Let u € N be greater
than every loosing number. Consider the members of the supposed residue class which are
greater than wu. They form an arithmetic progression with the property (*) , a

contradiction (by the lemma).



