Problem 1. Find all the positive integers x, y, z, t such that $2^{x} \cdot 3^{y}+5^{z}=7^{t}$.

Solution. Reducing modulo 3 we get $5^{z} \equiv 1$, therefore z is even, $z=2 c, c \in \mathbb{N}$
Next we prove that t is even. Obviously, $t \geq 2$. Let us suppose that t is odd, $t=2 d+1, d \in \mathbb{N}$. The equation becomes $2^{x} \cdot 3^{y}+25^{c}=7 \cdot 49^{d}$.
If $x \geq 2$, reducing modulo 4 , we get $1 \equiv 3$, contradiction.
For $x=1$, we have $2 \cdot 3^{y}+25^{c}=7 \cdot 49^{d}$, and, reducing modulo 24 , we obtain $2 \cdot 3^{y}+1 \equiv 7 \Rightarrow 24 \mid 2\left(3^{y}-3\right)$, i.e. $4 \mid 3^{y-1}-1$, which means that $y-1$ is even. Then, $y=2 b+1, b \in \mathbb{N}$.

We obtain $6 \cdot 9^{b}+25^{c}=7 \cdot 49^{d}$, and, reducing modulo 5 , we get $(-1)^{b} \equiv 2 \cdot(-1)^{d}$, which is false, for all $b, d \in \mathbb{N}$. Hence t is even, $t=2 d, d \in \mathbb{N}$.

The equation can be written as $2^{x} \cdot 3^{y}+25^{c}=49^{d} \Leftrightarrow 2^{x} \cdot 3^{y}=\left(7^{d}-5^{c}\right)\left(7^{d}+5^{c}\right)$.
As $\operatorname{gcd}\left(7^{d}-5^{c}, 7^{d}+5^{c}\right)=2$ and $7^{c}+5^{c}>2$, there are three possible situations:
(1) $\left\{\begin{array}{l}7^{d}-5^{c}=2^{x-1} \\ 7^{d}+5^{c}=2 \cdot 3^{y}\end{array}\right.$;
(2) $\left\{\begin{array}{l}7^{d}-5^{c}=2 \cdot 3^{y} \\ 7^{d}+5^{c}=2^{x-1}\end{array}\right.$;
(3) $\left\{\begin{array}{l}7^{d}-5^{c}=2 \\ 7^{d}+5^{c}=2^{x-1} \cdot 3^{y}\end{array}\right.$.

Case (1). We have $7^{d}=2^{x-2}+3^{y}$ and, reducing modulo 3, we get $2^{x-2} \equiv 1(\mathrm{~m}$ od 3), hence $x-2$ is even, i.e. $x=2 a+2$, where $a \in \mathbb{N}$, since $a=0$ would mean $3^{y}+1=7^{d}$, which is impossible (even $=$ odd).

We obtain $7^{d}-5^{c}=2 \cdot 4^{a} \stackrel{\text { mod }}{\Longrightarrow}{ }^{4} 7^{d} \equiv 1(\bmod 4) \Rightarrow d=2 e, e \in \mathbb{N}$. Then $49^{e}-5^{c}=2 \cdot 4^{k} \stackrel{\bmod }{\Longrightarrow}{ }^{8} 5^{c} \equiv 1$ $(\bmod 8) \Rightarrow c=2 f, f \in \mathbb{N}$. We obtain $49^{e}-25^{f}=2 \cdot 4^{a} \stackrel{\bmod }{\Longrightarrow} 0 \equiv 2(\bmod 3)$, false. In conclusion, in this case there are no solutions to the equation.

Case (2). From $2^{x-1}=7^{d}+5^{c} \geq 12$, we obtain $x \geq 5$. Then $7^{d}+5^{c} \equiv 0(\bmod 4)$, i.e. $3^{d}+1 \equiv 0$ $(\bmod 4)$, hence d is odd. As $7^{d}=5^{c}+2 \cdot 3^{y} \geq 11$, we get $d \geq 2$, hence $d=2 e+1, e \in \mathbb{N}$.

As in the previous case, from $7^{d}=2^{x-2}+3^{y}$, reducing modulo 3 , we obtain $x=2 a+2$, with $a \geq 2$ (because $x \geq 5$). We get $7^{d}=4^{a}+3^{y}$, i.e. $7 \cdot 49^{e}=4^{a}+3^{y}$, hence, reducingmodulo 8 , we obtain $7 \equiv 3^{y}$, which is false, because 3^{y} is congruent $\bmod 8$ either to 1 (if y is even) or to 3 (if y is odd). In conclusion, in this case there are no solutions to the equation.

Case (3). From $7^{d}=5^{c}+2$, it follows that the last digit of 7^{d} is 7 , hence $d=4 k+1, k \in \mathbb{N}$.
If $c \geq 2$, from $7^{4 k+1}=5^{c}+2$, reducing modulo 25 , we obtain $7 \equiv 2(\bmod 25)$, which is false. For $c=1$ we get $d=1$, and the solution $x=3, y=1, z=t=2$.

Problem 2. Find the largest positive integer n for which the inequality

$$
\frac{a+b+c}{a b c+1}+\sqrt[n]{a b c} \leq \frac{5}{2}
$$

holds for all $a, b, c \in[0,1]$.
Ştefan Spătaru
Solution. Let $E(n)=\frac{a+b+c}{a b c+1}+\sqrt[n]{a b c}$. Then $E(m)-E(n)=\sqrt[m]{a b c}-\sqrt[n]{a b c}$.
As $a b c \leq 1 \Leftrightarrow E(m) \geq E(n) \forall m \geq n$, it is sufficient to find n such that $\frac{a+b+c}{a b c+1}+\sqrt[n]{a b c} \leq \frac{5}{2}$ $\forall a, b, c \in[0,1]$ and $\exists a, b, c$ such that $\frac{a+b+c}{a b c+1}+\sqrt[n+1]{a b c}>\frac{5}{2}$.

Let us determine an upper bound for n, by plugging some particular values into the inequality.
For $(1,1, c)$ we obtain $\frac{c+2}{c+1}+\sqrt[n]{c} \leq \frac{5}{2}, \forall c \in[0,1] \Leftrightarrow \frac{1}{c+1}+\sqrt[n]{c} \leq \frac{3}{2}$. Let $\sqrt[n]{c}=x$. It is obvious that $\forall x \in[0 ; 1]$ can be written as $\sqrt[n]{c}$ for a certain $c \in[0 ; 1]$.

The inequality becomes $\frac{1}{x^{n}+1}+x \leq \frac{3}{2} \Leftrightarrow 2+2 x^{n+1}+2 x \leq 3 x^{n}+3 \Leftrightarrow 3 x^{n}+1 \geq 2 x^{n+1}+2 x \Leftrightarrow$ $2 x^{n}(1-x)+(1-x)+(x-1)\left(x^{n-1}+\cdots+x\right) \geq 0 \Leftrightarrow(1-x)\left[2 x^{n}+1-\left(x^{n-1}+x^{n-2}+\ldots+x\right)\right] \geq 0 \quad(*)$.

For $n=4$ we have $(1-x)\left(2 x^{n}+1-x^{n-2}-\ldots-x\right)=(1-x)\left(2 x^{4}+1-x^{3}-x^{2}-x\right)=(1-x)(x-$ 1) $\left(2 x^{3}+x^{2}-1\right)=-(1-x)^{2}\left(2 x^{3}+x^{2}-1\right)$.

For $x=0.9$ the inequality $(*)$ is no longer true, and, according to the remark from the beginning of the proof, the inequality in not fulfilled if $n \geq 4$.

Now, we shall prove that for $n=3$ the inequality holds. We shall use the following result:
For all $a, b, c \in[0 ; 1]: a b c+2 \geq a+b+c$.
Proof: $(a-1)(b-1) \geq 0 \Leftrightarrow a b+1 \geq a+b \Leftrightarrow 1 \geq a+b-a b$.
$(a b-1)(c-1) \geq 0 \Leftrightarrow a b c+1 \geq a b+c$.
Adding these two inequalities we obtain $a, b, c \in[0 ; 1] \Rightarrow a b c+2 \geq a+b+c$.
The inequality reduces to $\frac{a b c+2}{a b c+1}+\sqrt[3]{a b c} \leq \frac{5}{2} \Leftrightarrow \frac{1}{a b c+1}+\sqrt[3]{a b c} \leq \frac{3}{2}$. Denoting $\sqrt[3]{a b c}=y \in[0 ; 1]$ the inequality reduces to: $\frac{1}{y^{3}+1}+y \leq \frac{3}{2} \Leftrightarrow 2+2 y^{4}+2 y \leq 3 y^{3}+3 \Leftrightarrow-2 y^{4}+3 y^{3}-2 y+1 \geq 0 \Leftrightarrow$ $2 y^{3}(1-y)+(y-1) y(y+1)+(1-y) \geq 0 \Leftrightarrow(1-y)\left(2 y^{3}+1-y^{2}-y\right) \geq 0$. The last inequality is obvious because $y^{3}+1 \geq y^{2}+y \Leftrightarrow(y-1)^{2}(y+1) \geq 0$ and $y^{3} \geq 0$.

In conclusion, $n=3$.

Problem 3. Let $M N P Q$ be a square of side length 1 , and A, B, C, D points on the sides $M N, N P$, $P Q$, and $Q M$ respectively such that $A C \cdot B D=\frac{5}{4}$. Can the set $\{A B, B C, C D, D A\}$ be partitioned into two subsets S_{1} and S_{2} of two elements each such that both the sum of the elements of S_{1} and the sum of the elements of S_{2} are positive integers?

Flavian Georgescu

Solution. The answer is negative.
Suppose such a partitioning was possible. Then $A B+B C+C D+D A \in \mathbb{N}$.
But $(A B+B C)+(C D+D A)>A C+A C \geq 2$, hence $A B+B C+C D+D A>2$.
On the other hand, $A B+B C+C D+D A<(A N+N B)+(B P+P C)+(C Q+Q D)+(D M+M A)=4$, hence $A B+B C+C D+D A=3$.
Obviously the sums of the elements of S_{1} and S_{2} must be 1 and 2. Without loss of generality, we may assume that the sum of the elements of S_{1} is 1 and the sum of the elements of S_{2} is 2 . As $A B+B C>A C \geq 1$ we find that $S_{1} \neq\{A B, B C\}$. Similarly, S_{1} cannot contain two adjacent sides of the quadrilateral $A B C D$. Therefore, without loss of generality, we may assume that $S_{1}=\{A D, B C\}$ and $S_{2}=\{A B, C D\}$. Then $A D+B C=1$ and $A C+B D=2$.
We have $A D \cdot B C \leq \frac{1}{4} \cdot(A D+B C)^{2}=\frac{1}{4}$ and $A B \cdot C D \leq \frac{1}{4} \cdot(A B+C D)^{2}=1$.
According to Ptolemy's inequality, we have

$$
\frac{5}{4}=A C \cdot B D \leq A B \cdot C D+B C \cdot A D=1+\frac{1}{4}=\frac{5}{4}
$$

hence we have equality all around, which means the quadrilateral $A B C D$ is cyclic, $A D=B C=\frac{1}{2}$ and $A B=C D=1$, hence $A B C D$ is a rectangle of dimensions 1 and $\frac{1}{2}$.
There are many different ways of proving that this configuration is not possible. For example:
Suppose $A B C D$ is a rectangle with $A D=\frac{1}{2}, A B=1$. Then we have $A C=B D=\frac{\sqrt{5}}{2}$ and $\triangle A N B \equiv$ $\triangle C Q D$ (ASA). Denoting $A M=x, M D=y$ we have $A N=1-x, B N=1-y$ and the following conditions need to be fulfilled for some $x, y \in[0 ; 1]: x^{2}+y^{2}=\frac{1}{4},(1-x)^{2}+(1-y)^{2}=1$ and, as $B D^{2}=1^{2}+(2 y-1)^{2}$, we also need $1+(2 y-1)^{2}=\frac{5}{4}$. We obtain $y \in\left\{\frac{1}{4}, \frac{3}{4}\right\}$. Similarly, $A C^{2}=1^{2}+(2 x-1)^{2}$ yields $x \in\left\{\frac{1}{4}, \frac{3}{4}\right\}$ but these values do not fulfill $x^{2}+y^{2}=\frac{1}{4}$, therefore such a configuration is not possible.

