Problem 1. Find all the positive integers x, y, z, t such that 2% - 3¥ 4 5% = 7°.
Marius Perianu

Solution. Reducing modulo 3 we get 5* = 1, therefore z is even, z = 2¢, c € N

Next we prove that ¢ is even. Obviously, ¢ > 2. Let us suppose that ¢ is odd, t = 2d + 1, d € N. The
equation becomes 27 - 3¥ + 25¢ = 7 - 499,
If x > 2, reducing modulo 4, we get 1 = 3, contradiction.
For 2 = 1, we have 2-3Y +25¢ = 7-49%, and, reducing modulo 24, we obtain 2-3Y +1 =7 = 24 | 2(3Y — 3),
i.e. 4]3Y~1 — 1, which means that y — 1 is even. Then, y =2b+ 1, b € N.

We obtain 6 -9 +25¢ = 7-49%, and, reducing modulo 5, we get (—1)b =2 (—1)d7 which is false, for all
b,d € N. Hence t is even, t = 2d, d € N.

The equation can be written as 2% - 3¥ + 25¢ = 49¢ < 27 . 3¥ = (7d - 56) (7d + 56) .
As ged (7d —5¢, 7% 4 50) =2 and 7° + 5° > 2, there are three possible situations:

74— 5¢ =271 74— 5¢=2.3Y 74— 5¢=2
(1){7d+5c_23y ) (2){7d+5c_211 ’ (3) 7d+5c:2x71.3y
Case (1). We have 7¢ = 22=2 4 3 and, reducing modulo 3, we get 2°~2 = 1 (m od3), hence z — 2 is

even, i.e. ¥ = 2a + 2, where a € N, since a = 0 would mean 3¥ + 1 = 74, which is impossible (even = odd).
We obtain 7¢ — 5¢ = 2. 40 "2yt 7d = | (mod 4) = d = 2e¢, e € N. Then 49¢ — 5¢ = 2. 4k mod, 8 pe =

(mod 8) = ¢ = 2f, f € N. We obtain 49¢ — 25/ = 2.4¢ nodS ) =2 (mod 3), false. In conclusion, in this
case there are no solutions to the equation.

Case (2). From 27! = 79 4+ 5¢ > 12, we obtain # > 5. Then 7¢ + 5° = 0 (mod 4), i.e. 3¢ 4+1 =10
(mod 4), hence d is odd. As 7% =5°+2-3¥ > 11, we get d > 2, hence d = 2e + 1, e € N.

As in the previous case, from 7¢ = 272 + 3%, reducing modulo 3, we obtain z = 2a + 2, with a > 2
(because x > 5). We get 74 = 4% 4+ 3Y ie. 7-49° = 4% + 3Y, hence, reducingmodulo 8, we obtain 7 = 3,
which is false, because 3V is congruent mod 8 either to 1 (if y is even) or to 3 (if y is odd). In conclusion,
in this case there are no solutions to the equation.

Case (3). From 7% = 5¢ 4 2, it follows that the last digit of 7¢ is 7, hence d = 4k + 1, k € N.
If ¢ > 2, from 74+! = 5¢ 4+ 2, reducing modulo 25, we obtain 7 = 2 (mod25) , which is false.
For ¢ =1 we get d =1, and the solution x =3,y =1, z =t = 2.



Problem 2. Find the largest positive integer n for which the inequality

b n
atdTC | vabe <
abe +1

N | Ot

holds for all a,b,c € [0,1].

Stefan Spataru

b
Solution. Let E(n) = atbte + Vabe. Then E(m) — E(n) = Vabe — Vabe.

abc+1
o . at+b+c
As abc <1 & E(m) > E(n) Ym > n, it is sufficient to find n such that el +
abc

N Ot

abe <

b 5
Ya,b,c € [0,1] and Ja, b, ¢ such that arbre + "Vabc > =.
abc + 1 2

Let us determine an upper bound for n, by plugging some particular values into the inequality.

2 ) 1 3
Zil—i— e < 2 Vce[O,l]c)m—l— Ve < 7 Let ¢/c = x. Tt is obvious that

Va € [0;1] can be written as {/c for a certain ¢ € [0;1].

For (1,1, ¢) we obtain

3
The inequality becomes < 242" 422 < 3" +3 < 32" +1 > 22" 4% o
T

+1 2
20"l —2)+(1—2)+(@x—D)@"t+- - 4+2) >0 (1-2)22"+1— (@ 1 +2"2+...+2)] >0 (%).
Forn =4 wehave (1 —2)22" +1—-2"2—...—2)=(1-2)22*+1—-2% - 22 —2) = (1 —2)(z —

D223 +22-1) = —(1 —2)%(22% + 22 - 1).
For 2 = 0.9 the inequality (*) is no longer true, and, according to the remark from the beginning of the
proof, the inequality in not fulfilled if n > 4.

Now, we shall prove that for n = 3 the inequality holds. We shall use the following result:

For all a,b,c € [0;1]: abc+2>a+b+c.

Proof: (a—1)(b—1)>0<ab+1>a+b<s1>a+b—ab.
(ab—1)(c—1)>0<abc+1>ab+ec.

Adding these two inequalities we obtain a,b,c € [0;1] = abc+2 > a+ b+ c.

+ Vabe < Denoting vabc = y € [0;1]

oW

_ ) abc + 2 3 5 1
Th lity reduces t be< 5 &
€ 1mequality reduces to a,bc—|- 1 + m =9 abc+ 1

1 3
the inequality reduces to: g Ty <35 @ 242yt +2y <3P +3 e 2+ -2y+1 >0 &
Y
203(1—y)+(y—Dyly+1)+(1—y) >0< (1 —y)(2y> +1—y* —y) > 0. The last inequality is obvious

because y® + 1> 32 +y & (y — 1)?*(y+ 1) > 0 and y* > 0.

In conclusion, n = 3.



Problem 3. Let M N PQ be a square of side length 1, and A, B, C, D points on the sides M N, NP,
5
PQ, and QM respectively such that AC - BD = T Can the set {AB, BC, CD, DA} be partitioned into

two subsets S; and Sy of two elements each such that both the sum of the elements of S; and the sum of
the elements of Sy are positive integers?

Flavian Georgescu

Solution. The answer is negative.
Suppose such a partitioning was possible. Then AB + BC'+CD + DA € N.
But (AB+ BC) + (CD + DA) > AC + AC > 2, hence AB+ BC +CD + DA > 2.
On the other hand, AB+ BC+CD+ DA < (AN +NB)+(BP+PC)+ (CQ+ QD)+ (DM + MA) =4,
hence AB+ BC +CD+ DA =3.
Obviously the sums of the elements of S; and S5 must be 1 and 2. Without loss of generality, we may assume
that the sum of the elements of S; is 1 and the sum of the elements of Sy is 2. As AB+ BC > AC > 1
we find that Sy # {AB, BC'}. Similarly, Sy cannot contain two adjacent sides of the quadrilateral ABCD.
Therefore, without loss of generality, we may assume that S; = {AD, BC} and Sy = {AB, CD}. Then
AD+ BC =1and AC + BD = 2.
1 1 1
We have AD - BC < Z~(AD—|—BC)2 =1 and AB-CD < Z~(AB—|—CD)2 =1.
According to Ptolemy’s inequality, we have
5 1 5

1
hence we have equality all around, which means the quadrilateral ABCD is cyclic, AD = BC = 5 and

1
AB =CD =1, hence ABCD is a rectangle of dimensions 1 and 3

There are many different ways of proving that this configuration is not possible. For example:

1 5
Suppose ABCD is a rectangle with AD = 3 AB = 1. Then we have AC = BD = g and AANB =

ACQD (ASA). Denoting AM =z, MD = y we have AN = 1—2, BN = 1 —y and the following conditions
1
need to be fulfilled for some =,y € [0;1]: 2% +y* = T (1-2)2+(1-y)?>=1and, as BD?> = 1%+ (2y — 1)?,
5 5 . 1 3 . 5 5 5 . 1 3
we also need 14 (2y —1)* = T We obtain y € Tl Similarly, AC* = 1%+ (2 —1)* yields z € 71
1
but these values do not fulfill 22 + y? = 7 therefore such a configuration is not possible.
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