
Problem 1. Find all the positive integers x, y, z, t such that 2x · 3y + 5z = 7t.
Marius Perianu

Solution. Reducing modulo 3 we get 5z ≡ 1, therefore z is even, z = 2c, c ∈ N

Next we prove that t is even. Obviously, t ≥ 2. Let us suppose that t is odd, t = 2d + 1, d ∈ N. The
equation becomes 2x · 3y + 25c = 7 · 49d.
If x ≥ 2, reducing modulo 4, we get 1 ≡ 3, contradiction.
For x = 1, we have 2 ·3y +25c = 7 ·49d, and, reducing modulo 24, we obtain 2 ·3y +1 ≡ 7 ⇒ 24 | 2 (3y − 3) ,
i.e. 4 | 3y−1 − 1, which means that y − 1 is even. Then, y = 2b+ 1, b ∈ N.

We obtain 6 · 9b +25c = 7 · 49d, and, reducing modulo 5, we get (−1)
b ≡ 2 · (−1)

d
, which is false, for all

b, d ∈ N. Hence t is even, t = 2d, d ∈ N.

The equation can be written as 2x · 3y + 25c = 49d ⇔ 2x · 3y =
(
7d − 5c

) (
7d + 5c

)
.

As gcd
(
7d − 5c, 7d + 5c

)
= 2 and 7c + 5c > 2, there are three possible situations:

(1)

{
7d − 5c = 2x−1

7d + 5c = 2 · 3y ; (2)

{
7d − 5c = 2 · 3y
7d + 5c = 2x−1 ; (3)

{
7d − 5c = 2
7d + 5c = 2x−1 · 3y .

Case (1). We have 7d = 2x−2 + 3y and, reducing modulo 3, we get 2x−2 ≡ 1 (m od3) , hence x − 2 is
even, i.e. x = 2a+ 2, where a ∈ N, since a = 0 would mean 3y + 1 = 7d, which is impossible (even = odd).

We obtain 7d − 5c = 2 · 4a mod 4
=⇒ 7d ≡ 1 (mod 4) ⇒ d = 2e, e ∈ N. Then 49e − 5c = 2 · 4k mod 8

=⇒ 5c ≡ 1

(mod 8) ⇒ c = 2f, f ∈ N. We obtain 49e − 25f = 2 · 4a mod 3
=⇒ 0 ≡ 2 (mod 3) , false. In conclusion, in this

case there are no solutions to the equation.

Case (2). From 2x−1 = 7d + 5c ≥ 12, we obtain x ≥ 5. Then 7d + 5c ≡ 0 (mod 4) , i.e. 3d + 1 ≡ 0
(mod 4) , hence d is odd. As 7d = 5c + 2 · 3y ≥ 11, we get d ≥ 2, hence d = 2e+ 1, e ∈ N.

As in the previous case, from 7d = 2x−2 + 3y, reducing modulo 3, we obtain x = 2a + 2, with a ≥ 2
(because x ≥ 5). We get 7d = 4a + 3y, i.e. 7 · 49e = 4a + 3y, hence, reducingmodulo 8, we obtain 7 ≡ 3y,
which is false, because 3y is congruent mod 8 either to 1 (if y is even) or to 3 (if y is odd). In conclusion,
in this case there are no solutions to the equation.

Case (3). From 7d = 5c + 2, it follows that the last digit of 7d is 7, hence d = 4k + 1, k ∈ N.
If c ≥ 2, from 74k+1 = 5c + 2, reducing modulo 25, we obtain 7 ≡ 2 (mod25) , which is false.

For c = 1 we get d = 1, and the solution x = 3, y = 1, z = t = 2.
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Problem 2. Find the largest positive integer n for which the inequality

a+ b+ c

abc+ 1
+

n
√
abc ≤ 5

2

holds for all a, b, c ∈ [0, 1].

Ştefan Spătaru

Solution. Let E(n) =
a+ b+ c

abc+ 1
+ n

√
abc. Then E(m)− E(n) = m

√
abc− n

√
abc.

As abc ≤ 1 ⇔ E(m) ≥ E(n) ∀m ≥ n, it is sufficient to find n such that
a+ b+ c

abc+ 1
+ n

√
abc ≤ 5

2

∀a, b, c ∈ [0, 1] and ∃a, b, c such that
a+ b+ c

abc+ 1
+ n+1

√
abc >

5

2
.

Let us determine an upper bound for n, by plugging some particular values into the inequality.

For (1, 1, c) we obtain
c+ 2

c+ 1
+ n

√
c ≤ 5

2
, ∀c ∈ [0, 1] ⇔ 1

c+ 1
+ n

√
c ≤ 3

2
. Let n

√
c = x. It is obvious that

∀x ∈ [0; 1] can be written as n
√
c for a certain c ∈ [0; 1].

The inequality becomes
1

xn + 1
+ x ≤ 3

2
⇔ 2 + 2xn+1 + 2x ≤ 3xn + 3 ⇔ 3xn + 1 ≥ 2xn+1 + 2x ⇔

2xn(1− x) + (1− x) + (x− 1)(xn−1 + · · ·+ x) ≥ 0 ⇔ (1− x)[2xn + 1− (xn−1 + xn−2 + . . .+ x)] ≥ 0 (∗).
For n = 4 we have (1 − x)(2xn + 1 − xn−2 − . . . − x) = (1 − x)(2x4 + 1 − x3 − x2 − x) = (1 − x)(x −

1)(2x3 + x2 − 1) = −(1− x)2(2x3 + x2 − 1).
For x = 0.9 the inequality (∗) is no longer true, and, according to the remark from the beginning of the
proof, the inequality in not fulfilled if n ≥ 4.

Now, we shall prove that for n = 3 the inequality holds. We shall use the following result:

For all a, b, c ∈ [0; 1] : abc+ 2 ≥ a+ b+ c.
Proof: (a− 1)(b− 1) ≥ 0 ⇔ ab+ 1 ≥ a+ b ⇔ 1 ≥ a+ b− ab.
(ab− 1)(c− 1) ≥ 0 ⇔ abc+ 1 ≥ ab+ c.
Adding these two inequalities we obtain a, b, c ∈ [0; 1] ⇒ abc+ 2 ≥ a+ b+ c.

The inequality reduces to
abc+ 2

abc+ 1
+ 3

√
abc ≤ 5

2
⇔ 1

abc+ 1
+ 3

√
abc ≤ 3

2
. Denoting 3

√
abc = y ∈ [0; 1]

the inequality reduces to:
1

y3 + 1
+ y ≤ 3

2
⇔ 2 + 2y4 + 2y ≤ 3y3 + 3 ⇔ −2y4 + 3y3 − 2y + 1 ≥ 0 ⇔

2y3(1− y) + (y − 1)y(y + 1) + (1− y) ≥ 0 ⇔ (1− y)(2y3 + 1− y2 − y) ≥ 0. The last inequality is obvious

because y3 + 1 ≥ y2 + y ⇔ (y − 1)2(y + 1) ≥ 0 and y3 ≥ 0.

In conclusion, n = 3.
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Problem 3. Let MNPQ be a square of side length 1, and A, B, C, D points on the sides MN , NP ,

PQ, and QM respectively such that AC · BD =
5

4
. Can the set {AB, BC, CD, DA} be partitioned into

two subsets S1 and S2 of two elements each such that both the sum of the elements of S1 and the sum of
the elements of S2 are positive integers?

Flavian Georgescu

Solution. The answer is negative.
Suppose such a partitioning was possible. Then AB +BC + CD +DA ∈ N.
But (AB +BC) + (CD +DA) > AC +AC ≥ 2, hence AB +BC + CD +DA > 2.
On the other hand, AB +BC +CD+DA < (AN +NB) + (BP +PC) + (CQ+QD) + (DM +MA) = 4,
hence AB +BC + CD +DA = 3.
Obviously the sums of the elements of S1 and S2 must be 1 and 2. Without loss of generality, we may assume
that the sum of the elements of S1 is 1 and the sum of the elements of S2 is 2. As AB + BC > AC ≥ 1
we find that S1 ̸= {AB, BC}. Similarly, S1 cannot contain two adjacent sides of the quadrilateral ABCD.
Therefore, without loss of generality, we may assume that S1 = {AD, BC} and S2 = {AB, CD}. Then
AD +BC = 1 and AC +BD = 2.

We have AD ·BC ≤ 1

4
· (AD +BC)2 =

1

4
and AB · CD ≤ 1

4
· (AB + CD)2 = 1.

According to Ptolemy’s inequality, we have

5

4
= AC ·BD ≤ AB · CD +BC ·AD = 1 +

1

4
=

5

4
,

hence we have equality all around, which means the quadrilateral ABCD is cyclic, AD = BC =
1

2
and

AB = CD = 1, hence ABCD is a rectangle of dimensions 1 and
1

2
.

There are many different ways of proving that this configuration is not possible. For example:

Suppose ABCD is a rectangle with AD =
1

2
, AB = 1. Then we have AC = BD =

√
5

2
and ∆ANB ≡

∆CQD (ASA). Denoting AM = x, MD = y we have AN = 1−x, BN = 1−y and the following conditions

need to be fulfilled for some x, y ∈ [0; 1]: x2 + y2 =
1

4
, (1−x)2 +(1− y)2 = 1 and, as BD2 = 12 +(2y− 1)2,

we also need 1+(2y−1)2 =
5

4
. We obtain y ∈

{
1

4
,
3

4

}
. Similarly, AC2 = 12+(2x−1)2 yields x ∈

{
1

4
,
3

4

}
but these values do not fulfill x2 + y2 =

1

4
, therefore such a configuration is not possible.
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