Romanian proposal for JBMO 2013

1. A rectangle in the plane is called *latticed* if its vertices have integer coordinates. Prove that:

a) if a *latticed* rectangle has area 11, then its sides are parallel to the axes;

b) there exists a *latticed* rectangle of area 13 whose sides are not parallel to the axes.

Bogdan Enescu

Solution: a) We can translate the rectangle such that one of the vertices becomes the origin. The coordinates of the vertices are A(0,0), B(a,b), $D(c, -\frac{ac}{b})$, $C(a+c, b-\frac{ac}{b})$. Suppose $b \neq 0$. Then the dimensions of the rectangle are $L = \sqrt{a^2 + b^2}$ and $\ell = \frac{c\sqrt{a^2 + b^2}}{b}$, hence the condition $L \cdot \ell = 11$ reduces to $c(a^2 + b^2) = 11b$. We obtain that $c \neq 0$. From $11 \mid a^2 + b^2$ it follows that $11 \mid a, 11 \mid b$, which means a = 11x, b = 11y, $x, y \in \mathbb{N}$ with $c(x^2 + y^2) = y$. We have $\mid c(x^2 + y^2) \mid \geq x^2 + y^2 \geq y^2 \geq \mid y \mid$ with equality if and only if $c = \pm 1$, a = 0, $b = \pm 11$, which means that the rectangle has its sides parallel to the axes.

b) Similarly, one arrives to $c(a^2 + b^2) = 13b$, with the solution a = 2, b = 3, c = 3 which leads to a square whose sides are not parallel to the axes.