Romanian proposal for JBMO 2013

1. A rectangle in the plane is called latticed if its vertices have integer coordinates.

Prove that:
a) if a latticed rectangle has area 11, then its sides are parallel to the axes;
b) there exists a latticed rectangle of area 13 whose sides are not parallel to the axes.

Bogdan Enescu
Solution: a) We can translate the rectangle such that one of the vertices becomes the origin. The coordinates of the vertices are $A(0,0), B(a, b), D\left(c,-\frac{a c}{b}\right), C\left(a+c, b-\frac{a c}{b}\right)$. Suppose $b \neq 0$. Then the dimensions of the rectangle are $L=\sqrt{a^{2}+b^{2}}$ and $\ell=\frac{c \sqrt{a^{2}+b^{2}}}{b}$, hence the condition $L \cdot \ell=11$ reduces to $c\left(a^{2}+b^{2}\right)=11 b$. We obtain that $c \neq 0$. From $11 \mid a^{2}+b^{2}$ it follows that $11|a, 11| b$, which means $a=11 x, b=11 y, x, y \in \mathbb{N}$ with $c\left(x^{2}+y^{2}\right)=y$. We have $\left|c\left(x^{2}+y^{2}\right)\right| \geq x^{2}+y^{2} \geq y^{2} \geqslant|y|$ with equality if and only if $c= \pm 1, a=0, b= \pm 11$, which means that the rectangle has its sides parallel to the axes.
b) Similarly, one arrives to $c\left(a^{2}+b^{2}\right)=13 b$, with the solution $a=2, b=3, c=3$ which leads to a square whose sides are not parallel to the axes.

