
Chapter 1

2009 Shortlist JBMO - Problems

1.1 Algebra

A1 Determine all integers a, b, c satisfying the identities:

a + b + c = 15

(a− 3)3 + (b− 5)3 + (c− 7)3 = 540.

A2 Find the maximum value of z + x, if (x, y, z, t) satisfies the conditions:
x2 + y2 = 4
z2 + t2 = 9
xt + yz ≥ 6.

A3 Find all values of the real parameter a, for which the system{
(|x|+ |y| − 2)2 = 1

y = ax + 5

has exactly three solutions.

A4 Real numbers x, y, z satisfy
0 < x, y, z < 1

and
xyz = (1− x)(1− y)(1− z).

Show that
1

4
≤ max{(1− x)y, (1− y)z, (1− z)x}.

A5 Let x, y, z be positive real numbers. Prove that:

(x2 + y + 1)(x2 + z + 1)(y2 + z + 1)(y2 + x + 1)(z2 + x + 1)(z2 + y + 1) ≥ (x + y + z)6.
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1.2 Combinatorics

C1 Each one of 2009 distinct points in the plane is coloured in blue or red, so that on
every blue-centered unit circle there are exactly two red points. Find the gratest possible
number of blue points.

C2 Five players (A,B,C,D,E) take part in a bridge tournament. Every two players
must play (as partners) against every other two players. Any two given players can be
partners not more than once per day. What is the least number of days needed for this
tournament?

C3 a) In how many ways can we read the word SARAJEVO from the table below, if it
is allowed to jump from any cell to an adjacent cell (by vertex or a side)?

b) After the letter in one cell was deleted, only 525 ways to read the word SARAJEVO
remained. Find all possible positions of that cell.

C4 Determine all pairs (m,n) for which it is possible to tile the table m×n with ”corners”
as in the figure below, with the condition that in the tiling there is no rectangle (except
for the m× n one) regularly covered with corners.

1.3 Geometry

G1 Let ABCD be a parallelogram with AC > BD, and let O be the point of intersection
of AC and BD. The circle with center at O and radius OA intersects the extensions of
AD and AB at points G and L, respectively. Let Z be intersection point of lines BD and
GL. Prove that ∠ZCA = 90◦.

G2 In a right trapezoid ABCD (AB ‖ CD) the angle at vertex B measures 75◦. Point
H is the foot of the perpendicular from point A to the line BC. If BH = DC and
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AD + AH = 8, find the area of ABCD.

G3 A parallelogram ABCD with obtuse angle ∠ABC is given. After rotating the triangle
ACD around the vertex C, we get a triangle CD′A′, such that points B, C and D′ are
collinear. The extension of the median of triangle CD′A′ that passes through D′ intersects
the straight line BD at point P . Prove that PC is the bisector of the angle ∠BPD′.

G4 Let ABCDE be a convex pentagon such that AB + CD = BC + DE and let k
be a semicircle with center on side AE that touches the sides AB, BC, CD and DE of
the pentagon, respectively, at points P , Q, R and S (different from the vertices of the
pentagon). Prove that PS ‖ AE.

G5 Let A, B, C and O be four points in the plane, such that ∠ABC > 90◦ and OA =
OB = OC. Define the point D ∈ AB and the line ` such that D ∈ `, AC ⊥ DC and
` ⊥ AO. Line ` cuts AC at E and the circumcircle of 4ABC at F . Prove that the
circumcircles of triangles BEF and CFD are tangent at F .

1.4 Number Theory

NT1 Determine all positive integer numbers k for which the numbers k + 9 are perfect
squares and the only prime factors of k are 2 and 3.

NT2 A group of n > 1 pirates of different ages owned a total of 2009 coins. Initially each
pirate (except the youngest one) had one coin more than the next younger.

a) Find all possible values of n.
b) Every day a pirate was chosen. The chosen pirate gave a coin to each of the other
pirates. If n = 7, find the largest possible number of coins a pirate can have after several
days.

NT3 Find all pairs (x, y) of integers which satisfy the equation

(x + y)2(x2 + y2) = 20092.

NT4 Determine all prime numbers p1, p2, . . . , p12, p13, p1 ≤ p2 ≤ . . . ≤ p12 ≤ p13, such
that

p21 + p22 + . . . + p212 = p213

and one of them is equal to 2p1 + p9.

NT5 Show that there are infinitely many positive integers c, such that both of the fol-
lowing equations have solutions in positive integers:

(x2 − c)(y2 − c) = z2 − c

and
(x2 + c)(y2 − c) = z2 − c.
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Chapter 2

2009 Shortlist JBMO - Solutions

2.1 Algebra

A1 Determine all integers a, b, c satisfying the identities:

a + b + c = 15

(a− 3)3 + (b− 5)3 + (c− 7)3 = 540.

Solution I: We will use the following fact:
Lemma: If x, y, z are integers such that

x + y + z = 0

then
x3 + y3 + z3 = 3xyz.

Proof: Let
x + y + z = 0.

Then we have

x3 + y3 + z3 = x3 + y3 + (−x− y)3 = x3 + y3 − x3 − y3 − 3xy(x + y) = 3xyz.

�
Now, from

a + b + c = 15

we obtain:
(a− 3) + (b− 5) + (c− 7) = 0.

Using the lemma and the given equations, we get:

540 = (a− 3)3 + (b− 5)3 + (c− 7)3 = 3(a− 3)(b− 5)(c− 7).
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Now,
(a− 3)(b− 5)(c− 7) = 180 = 2× 2× 3× 3× 5.

Since
(a− 3) + (b− 5) + (c− 7) = 0

only possibility for the product (a− 3)(b− 5)(c− 7) is (−4)× (−5)× 9.
Finally, we obtain the following systems of equations:

a− 3 = −4
b− 5 = −5
c− 7 = 9,


a− 3 = −5
b− 5 = −4
c− 7 = 9,


a− 3 = −4
b− 5 = −5
c− 7 = 9,


a− 3 = −5
b− 5 = −4
c− 7 = 9.

From here we get:

(a, b, c) ∈ {(−1, 0, 16), (−2, 1, 16), (7, 10,−2), (8, 9,−2)}.

Solution II: We use the substitution a− 3 = x, b− 5 = y, c− 7 = z.
Now, equations are transformed to:

x + y + z = 0

x3 + y3 + z3 = 540.

Substituting z = −x− y in second equation, we get:

−3xy2 − 3x2y = 540

or
xy(x + y) = −180

or
xyz = 180.

Returning to starting problem we have:

(a− 3)(b− 5)(c− 7) = 180.

Solution proceeds as the previous one.
A2 Find the maximum value of z + x, if (x, y, z, t) satisfies the conditions:

x2 + y2 = 4
z2 + t2 = 9
xt + yz ≥ 6.

Solution I: From the conditions we have

36 = (x2 + y2)(z2 + t2) = (xt + yz)2 + (xz − yt)2 ≥ 36 + (xz − yt)2

and this implies xz − yt = 0.
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Now it is clear that

x2 + z2 + y2 + t2 = (x + z)2 + (y − t)2 = 13

and the maximum value of z + x is
√

13. It is achieved for x = 4√
13

, y = t = 6√
13

and

z = 9√
13

.

Solution II: From inequality xt + yz ≥ 6 and problem conditions we have:

(xt + yz)2 − 36 ≥ 0⇔

(xt + yz)2 − (x2 + y2)(z2 + t2) ≥ 0⇔

2xyzt− x2y2 − y2t2 ≥ 0⇔

−(xz − yt)2 ≥ 0.

From here we have xz = yt.
Furthermore,

x2 + y2 + z2 + t2 = (x + z)2 + (y − t)2 = 13,

and it follows that
(x + z)2 ≤ 13.

Thus,
x + z ≤

√
13.

Equality x+ z =
√

13 holds if we have y = t and z2− x2 = 5, which leads to z− x = 5√
13

.

Therefore, x = 4√
13

, y = t = 6√
13

, z = 9√
13

.

A3 Find all values of the real parameter a, for which the system{
(|x|+ |y| − 2)2 = 1

y = ax + 5

has exactly three solutions.
Solution: The first equation is equivalent to

|x|+ |y| = 1

or
|x|+ |y| = 3.

The graph of the first equation is symmetric with respect to both axes. In the first
quadrant it is reduced to x + y = 1, whose graph is segment connecting points (1,0) and
(0,1). Thus, the graph of

|x|+ |y| = 1

is square with vertices (1,0), (0,1), (−1, 0) and (0,−1). Similarly, the graph of

|x|+ |y| = 3
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is a square with vertices (3,0), (0,3), (−3, 0) and (0,−3). The graph of the second equation
of the system is a straight line with slope a passing through (0,5). This line intersects
the graph of the first equation in three points exactly, when passing through one of the
points (1,0) or (−1, 0). This happens if and only if a = 5 or a = −5.
A4 Real numbers x, y, z satisfy

0 < x, y, z < 1

and
xyz = (1− x)(1− y)(1− z).

Show that
1

4
≤ max{(1− x)y, (1− y)z, (1− z)x}.

Solution: It is clear that a(1−a) ≤ 1
4

for any real numbers a (equivalent to 0 < (2a−1)2).
Thus,

xyz = (1− x)(1− y)(1− z)

(xyz)2 = [x(1− x)][y(1− y)][z(1− z)] ≤ 1

4
· 1

4
· 1

4
=

1

43

xyz ≤ 1

23
.

It implies that at least one of x, y, z is at less or equal to 1
2
. Let us say that x ≤ 1

2
, and

notice that 1− x ≥ 1
2
.

Assume contrary to required result, that we have

1

4
> max{(1− x)y, (1− y)x, (1− z)x}.

Now,

(1− x)y <
1

4
, (1− y)z <

1

4
, (1− z)x <

1

4
.

From here we deduce:

y <
1

4
· 1

1− x
≤ 1

4
· 2 =

1

2
.

Notice that 1− y > 1
2
.

Using same reasoning we conclude:

z <
1

2
, 1− z >

1

2
.

Using these facts we derive:

1

8
=

1

2
· 1

2
· 1

2
> xyz = (1− x)(1− y)(1− z) >

1

2
· 1

2
· 1

2
=

1

8
.

Contradiction!
Remark: The exercise along with its proof generalizes for any given (finite) number of
numbers, and you can consider this new form in place of the proposed one:
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Exercise: If for the real numbers x1, x2, . . . , xn, 0 < xi < 1, for all indices i, and

x1x2 . . . xn = (1− x1)(1− x2) . . . (1− xn),

show that
1

4
≤ max

1≤i≤n
(1− xi)xi+1

(where xn+1 = x1).
Or you can consider the following variation:
Exercise: If for the real numbers x1, x2, . . . , x2009, 0 < xi < 1, for all indices i, and

x1x2 . . . x2009 = (1− x1)(1− x2) . . . (1− x2009),

show that
1

4
≤ max

1≤i≤2009
(1− xi)xi+1

(where x2010 = x1).
A5 Let x, y, z be positive real numbers. Prove that:

(x2 + y + 1)(x2 + z + 1)(y2 + z + 1)(y2 + x + 1)(z2 + x + 1)(z2 + y + 1) ≥ (x + y + z)6.

Solution I: Applying Cauchy-Schwarz’s inequality:

(x2 + y + 1)(z2 + y + 1) = (x2 + y + 1)(1 + y + z2) ≥ (x + y + z)2.

Using the same reasoning we deduce:

(x2 + z + 1)(y2 + z + 1) ≥ (x + y + z)2

and
(y2 + x + 1)(z2 + x + 1) ≥ (x + y + z)2.

Multiplying these three inequalities we get the desired result.
Solution II: We have

(x2 + y + 1)(z2 + y + 1) ≥ (x + y + z)2 ⇔

x2z2 + x2y + x2 + yz2 + y2 + y + z2 + y + 1 ≥ x2 + y2 + z2 + 2xy + 2yz + 2zx⇔
(x2z2 − 2zx + 1) + (x2y − 2xy + y) + (yz2 − 2yz + y) ≥ 0⇔

(xz − 1)2 + y(x− 1)2 + y(z − 1)2 ≥ 0

which is correct.
Using the same reasoning we get:

(x2 + z + 1)(y2 + z + 1) ≥ (x + y + z)2

(y2 + x + 1)(z2 + x + 1) ≥ (x + y + z)2.

Multiplying these three inequalities we get the desired result. Equality is attained at
x = y = z = 1.
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2.2 Combinatorics

C1 Each one of 2009 distinct points in the plane is coloured in blue or red, so that on
every blue-centered unit circle there are exactly two red points. Find the gratest possible
number of blue points.
Solution: Each pair of red points can belong to at most two blue-centered unit circles.
As n red points form n(n−1)

2
pairs, we can have not more than twice that number of blue

points, i.e. n(n− 1) blue points. Thus, the total number of points can not exceed

n + n(n− 1) = n2.

As 442 < 2009, n must be at least 45. We can arrange 45 distinct red points on a segment
of length 1, and color blue all but 16 (= 452 − 2009) points on intersections of the red-
centered unit circles (all points of intersection are distinct, as no blue-centered unit circle
can intersect the segment more than twice). Thus, the greatest possible number of blue
points is 2009− 45 = 1964.

C2 Five players (A,B,C,D,E) take part in a bridge tournament. Every two players
must play (as partners) against every other two players. Any two given players can be
partners not more than once per day. What is the least number of days needed for this
tournament?
Solution: A given pair must play with three other pairs and these plays must be in
different days, so at three days are needed. Suppose that three days suffice. Let the pair
AB play against CD on day x. Then AB − DE and CD − BE cannot play on day x.
Then one of the other two plays of DE (with AC and BC) must be on day x. Similarly,
one of the plays of BE with AC or AD must be on day x. Thus, two of the plays in the
chain BC −DE −AC −BE −AD are on day x (more than two among these cannot be
on one day).
Consider the chain AB − CD − EA − BD − CE − AB. At least three days are needed
for playing all the matches within it. For each of these days we conclude (as above) that
there are exactly two of the plays in the chain BC−DE−AC−BE−AD−BC on that
day. This is impossible, as this chain consists of five plays.
It remains to show that four days will suffice:
Day 1: AB − CD, AC −DE, AD − CE, AE −BC
Day 2: AB −DE, AC −BD, AD −BC, BE − CD
Day 3: AB − CE, AD −BE, AE −BD, BC −DE
Day 4: AC −BE, AE − CD, BD − CE.
Remark: It is possible to have 5 games in one day (but not on each day).

Alternative solution:
There are 10 pairs. Each of them plays 3 games, so the tournament needs to last at least
3 days. Assume the tournament could finish in 3 days. Then every pair must play one
game on each day. There are 15 games to be played, so you must have 5 games on each
day. Call ”Day 1” the day AB plays against CD, ”Day 2” the day AB plays against DE
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and ”Day 3” the day AB plays against CE. Let us examine the other possible games on
Day 1. CE can’t play AB, so it must play either AD or BD. DE can’t play AB, so it must
play AC or BC. Similarly, AE can’t play CD, so it must play BC or BD, and BE must
play either AC or AD. We obtain the following circular diagram in which exact every
other game has to take place on Day 1, either the red ones or the blue ones:

Similar reasoning leads un to the following diagram for Day 2. Here again, either all the
red matches have to take place, or all the blue matches have to take place on Day 2.

One can’t have the blue matches on both Day 1 and Day 2 because AD-BE would repeat
itself.
We can’t have the red mathes on both days as this would repeat the match BD-CE.
We can not have the blue matches on Day 1 and the red matches on Day 2 because this
would repeat the game AC-BE. Finally, choosing the red matches on Day 1 and the blue
ones on Day 2 won’t work either as the game AE-BC would repeat itself.
In conclusion, the tournament has to last at least four days. An example of how it could
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be organized in four days is given in the previous solution.

C3 a) In how many ways can we read the word SARAJEVO from the table below, if it
is allowed to jump from cell to an adjacent cell (by vertex or a side) cell?

b) After the letter in one cell was deleted, only 525 ways to read the word SARAJEVO
remained. Find all possible positions of that cell.
Solution: In the first of the tables below the number in each cell shows the number of
ways to reach that cell from the start (which is the sum of the quantities in the cells, from
which we can come), and in the second one are the number of ways to arrive from that
cell to the end (which is the sum of the quantities in the cells, to which we can go).
a) The answer is 750, as seen from the second table.
b) If we delete the letter in a cell, the number of ways to read SARAJEVO will decrease by
the product of the numbers in the corresponding cell in the two tables. As 750−525 = 225,
this product has to be 225. This happens only for two cells on the third row. Here is the
table with the products:
C4 Determine all pairs (m,n) for which it is possible to tile the table m×n with ”corners”
as in the figure below, with the condition that in the tiling there is no rectangle (except
for the m× n one) regularly covered with corners.

Solution: Every ”corner” covers exactly 3 squares, so a necessary condition for the tiling
to exists is 3 | mn.
First, we shall prove that for a tiling with our condition to exist, it is necessary that both
m,n for m,n > 3 to be even. Suppose the contrary, i.e. suppose that that m > 3 is
odd (without losing generality). Look at the ”corners” that cover squares on the side
of length m of table m × n. Because m is odd, there must be a ”corner” which covers
exactly one square of that side. But any placement of that corner forces existence of a
2× 3 rectangle in the tiling. Thus, m and n for m,n > 3 must be even and at least one
of them is divisible by 3.
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Notice that in the corners of table m×n, the ”corner” must be placed such that it covers
the square in the corner of the rectangle and its two neighboring squares, otherwise, again,
a 2× 3 rectangle would form.
If one of m and n is 2 then condition forces that the only convenient tables are 2× 3 and
3× 2. If we try to find the desired tiling when m = 4, then we are forced to stop at table
4× 6 because of the conditions of problem.
We easily find an example of a desired tiling for the table 6 × 6 and, more generally, a
tiling for a 6× 2k table.
Thus, it will be helpful to prove that the desired tiling exists for tables 6k×4`, for k, ` ≥ 2.
Divide that table at rectangle 6× 4 and tile that rectangle as we described. Now, change
placement of problematic ”corners” as in figure.
Thus, we get desired tilling for this type of table.
Similarly, we prove existence in case 6k × (4k + 2) where m, ` ≥ 2. But, we first divide
table at two tables 6k × 6 and 6k × 4(`− 1). Divide them at rectangles 6× 6 and 6× 4.
Tile them as we described earlier, and arrange problematic ”corners” as in previous case.
So, 2 × 3, 3 × 2, 6 × 2k, 2k × 6, k ≥ 2, and 6k × 4` for k, ` ≥ 2 and 6k × (4` + 2) for
k, ` ≥ 2 are the convenient pairs.
Remark: The problem is inspired by a problem given at Romanian Selection Test 2000,
but it is completely different.
Remark: Alternatively, the problem can be relaxed by asking: ”Does such a tiling exist
for some concrete values of m and n?”.

2.3 Geometry

G1 Let ABCD be a parallelogram with AC > BD, and let O be the point of intersection
of AC and BD. The circle with center at O and radius OA intersects the extensions of
AD and AB at points G and L, respectively. Let Z be intersection point of lines BD and
GL. Prove that ∠ZCA = 90◦.

Solution:
From the point L we draw a parallel line to BD that intersects lines AC and AG at points
N and R respectively. Since DO = OB, we have that NR = NL, and point N is the
midpoint of segment LR.
Let K be the midpoint of GL. Now, NK ‖ RG, and

∠AGL = ∠NKL = ∠ACL.

Therefore, from the cyclic quadrilateral NKCL we deduce:

∠KCN = ∠KLN.

Now, since LR ‖ DZ, we have
∠KLN = ∠KZO.
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It implies that quadrilateral OKCZ is cyclic, and

∠OKZ = ∠OCZ.

Since OK ⊥ GL, we derive that ∠ZCA = 90◦.

G2 In a right trapezoid ABCD (AB ‖ CD) the angle at vertex B measures 75◦. Point
H is the foot of the perpendicular from point A to the line BC. If BH = DC and
AD + AH = 8, find the area of ABCD.

Solution: Produce the legs of the trapezoid until
they intersect at point E. The triangles ABH and
ECD are congruent (ASA). The area of ABCD is
equal to area of triangle EAH of hypotenuse

AE = AD + DE = AD + AH = 8.

Let M be the midpoint of AE. Then

ME = MA = MH = 4

and ∠AMH = 30◦. Now, the altitude from H to
AM equals one half of MH, namely 2. Finally,
the area is 8.
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G3 A parallelogram ABCD with obtuse angle ∠ABC is given. After rotating the triangle
ACD around the vertex C, we get a triangle CD′A′, such that points B, C and D′ are
collinear. The extension of the median of triangle CD′A′ that passes through D′ intersects
the straight line BD at point P . Prove that PC is the bisector of the angle ∠BPD′.

Solution: Let AC ∩ BD = {X} and PD′ ∩ CA′ = {Y }. Because AX = CX and
CY = Y A′, we deduce:

4ABC ∼= 4CDA ∼= 4CD′A′ ⇒4ABX ∼= 4CD′Y, 4BCX ∼= 4D′A′Y.

It follows that
∠ABX = ∠CD′Y.

Let M and N be orthogonal projections of the point C on the straight lines PD′ and BP ,
respectively, and Q is the orthogonal projection of the point A on the straight line BP .
Because CD′ = AB, we have that 4ABQ ∼= 4CD′M .
We conclude that CM = AQ. But, AX = CX and 4AQX ∼= 4CNX. So, CM = CN
and PC is the bisector of the angle ∠BPD′.

Much shortened: ∆CD′Y ≡ ∆CDX means their altitudes from C are also equal, i.e.
CM = CN and the conclusion.
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G4 Let ABCDE be a convex pentagon such that AB + CD = BC + DE and let k
be a semicircle with center on side AE that touches the sides AB, BC, CD and DE of
the pentagon, respectively, at points P , Q, R and S (different from the vertices of the
pentagon). Prove that PS ‖ AE.

Solution: Let O be center of k. We deduce that BP = BQ, CQ = CR, DR = DS, since
those are tangents to the circle k. Using the condition AB +CD = BC +DE, we derive:

AP + BP + CR + DR = BQ + CQ + DS + ES.

From here we have AP = ES.
Thus,

4APO ∼= 4ESO (AP = ES, ∠APO = ∠ESO = 90◦, PO = SO).

This implies
∠OPS = ∠OSP.

Therefore,

∠APS = ∠APO + ∠OPS = 90◦ + ∠OPS = 90◦ + ∠OSP = ∠PSE.

Now, from quadrilateral APSE we deduce:

2∠EAP + 2∠APS = ∠EAP + ∠APS + ∠PSE + ∠SEA = 360◦.

So,
∠EAP + ∠APS = 180◦

and APSE is isosceles trapezoid. Therefore, AE ‖ PS.
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G5 Let A, B, C and O be four points in the plane, such that ∠ABC > 90◦ and OA =
OB = OC. Define the point D ∈ AB and the line ` such that D ∈ `, AC ⊥ DC and
` ⊥ AO. Line ` cuts AC at E and the circumcircle of 4ABC at F . Prove that the
circumcircles of triangles BEF and CFD are tangent at F .
Solution: Let ` ∩ AC = {K} and define G to be the mirror image of the point A with
respect to O. Then AG is a diameter of the circumcircle of the triangle ABC, therefore
AC ⊥ CG. On the other hand we have AC ⊥ DC, and it implies that points D, C, G
are collinear.
Moreover, as AE ⊥ DG and DE ⊥ AG, we obtain that E is the orthocenter of triangle
ADG and GE ⊥ AD. As AG is a diameter, we have AB ⊥ BG, and since AD ⊥ GE,
the points E, G, and B are collinear.

Notice that
∠CAG = 90◦ − ∠AGC = ∠KDC

and
∠CAG = ∠GFC,

since both subtend the same arc.
Hence,

∠FDG = ∠GFC.

Therefore, GF is tangent to the circumcircle of the triangle CDF at point F .
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We claim that line GF is also tangent to the circumcircle of triangle BEF at point F ,
which concludes the proof.
The claim is equivalent to ∠GBF = ∠EFG. Denote by F ′ the second intersection
point - other than F - of line ` with the circumcircle of triangle ABC. Observe that
∠GBF = ∠GF ′F , because both angles subtend the same arc, and ∠FF ′G = ∠EFG,
since AG is the perpendicular bisector of the chord FF ′, and we are done.

2.4 Number Theory

NT1 Determine all positive integer numbers k for which the numbers k + 9 are perfect
squares and the only prime factors of k are 2 and 3.

Solution: We have an integer x such that

x2 = k + 9

k = 2a3b, a, b ≥ 0, a, b ∈ N.
Therefore,

(x− 3)(x + 3) = k.

If b = 0 then we have k = 16.
If b > 0 then we have 3 | k + 9. Hence, 3 | x2 and 9 | k.
Therefore, we have b ≥ 2. Let x = 3y.

(y − 1)(y + 1) = 2a3b−2.

If a = 0 then b = 3 and we have k = 27.
If a ≥ 1, then the numbers y − 1 and y + 1 are even. Therefore, we have a ≥ 2, and

y − 1

2
· y + 1

2
= 2a−23b−2.

Since the numbers y−1
2

, y+1
2

are consecutive numbers, these numbers have to be powers of
2 and 3. Let m = a− 2, n = b− 2.
• If 2m−3n = 1 then we have m ≥ n. For n = 0 we have m = 1, a = 3, b = 2 and k = 72.
For n > 0 using mod 3 we have that m is even number. Let m = 2t. Therefore,

(2t − 1)(2t + 1) = 3n.

Hence, t = 1, m = 2, n = 1 and a = 4, b = 3, k = 432.
• If 3n − 2m = 1, then m > 0. For m = 1 we have n = 1, a = 3, b = 3, k = 216. For
m > 1 using mod 4 we have that n is even number. Let n = 2t.

(3t − 1)(3t + 1) = 2m.

Therefore, t = 1, n = 2, m = 3, a = 5, b = 4, k = 2592.
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Set of solutions: {16, 27, 72, 216, 432, 2592}.
NT2 A group of n > 1 pirates of different age owned total of 2009 coins. Initially each
pirate (except for the youngest one) had one coin more than the next younger.
a) Find all possible values of n.
b) Every day a pirate was chosen. The chosen pirate gave a coin to each of the other
pirates. If n = 7, find the largest possible number of coins a pirate can have after several
days.
Solution:
a) If n is odd, then it is a divisor of 2009 = 7× 7× 41. If n > 49, then n is at least 7× 41,
while the average pirate has 7 coins, so the initial division is impossible. So, we can have
n = 7, n = 41 or n = 49. Each of these cases is possible (e.g. if n = 49, the average pirate
has 41 coins, so the initial amounts are from 41− 24 = 17 to 41 + 24 = 65).
If n is even, then 2009 is multiple of the sum S of the oldest and the youngest pirate. If
S < 7 × 41, then S is at most 39 and the pairs of pirates of sum S is at least 41, so we
must have at least 82 pirates, a contradiction. So we can have just S = 7× 41 = 287 and
S = 49× 41 = 2009; respectively, n = 2× 7 = 14 or n = 2× 1 = 2. Each of these cases is
possible (e.g. if n = 14, the initial amounts are from 144− 7 = 137 to 143 + 7 = 150).
In total, n is one of the numbers 2, 7, 13, 41 and 49.
b) If n = 7, the average pirate has 7 × 41 = 287 coins, so the initial amounts are from
284 to 290; they have different residues modulo 7. The operation decreases one of the
amounts by 6 and increases the other ones by 1, so the residues will be different at all
times. The largest possible amount in one pirate’s possession will be achieved if all the
others have as little as possible, namely 0, 1, 2, 3, 4 and 5 coins (the residues modulo 7
have to be different). If this happens, the wealthiest pirate will have 2009 − 14 = 1994
coins. Indeed, this can be achieved e.g. if every day (until that moment) the coins are
given by the second wealthiest: while he has more than 5 coins, he can provide the 6 coins
needed, and when he has no more than five, the coins at the poorest six pirates have to
be 0, 1, 2, 3, 4, 5. Thus, n = 1994 can be achieved.
NT3 Find all pairs (x, y) of integers which satisfy the equation

(x + y)2(x2 + y2) = 20092.

Solution: Let x + y = s, xy = p with s ∈ Z∗ and p ∈ Z. The given equation can be
written in the form

s2(s2 − 2p) = 20092

or

s2 − 2p =

(
2009

s

)2

.

So, s divides 2009 = 72 × 41 and it follows that p 6= 0.
If p > 0, then 20092 = s2(s2 − 2p) = s4 − 2ps2 < s4. We obtain that s divides 2009 and
|s| ≥ 49. Thus, s ∈ {±49,±287,±2009}.
• For s = ±49, we have p = 360, and (x, y) = {(40, 9), (9, 40), (−40,−9), (−9,−40)}.
• For s ∈ {±287,±2009} the equation has no integer solutions.
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If p < 0, then 20092 = s4− 2ps2 > s4. We obtain that s divides 2009 and |s| ≤ 41. Thus,
s ∈ {±1,±7,±41}. For these values of s the equation has no integer solutions.
So, the given equation has only the solutions (40, 9), (9, 40), (−40,−9), (−9,−40).
NT4 Determine all prime numbers p1, p2, . . . , p12, p13, p1 ≤ p2 ≤ . . . ≤ p12 ≤ p13, such
that

p21 + p22 + . . . + p212 = p213

and one of them is equal to 2p1 + p9.
Solution: Obviously, p13 6= 2, because sum of squares of 12 prime numbers is greater or
equal to 12× 22 = 48. Thus, p13 is odd number and p13 ≥ 7.
We have that n2 ≡ 1 (mod 8), when n is odd. Let k be the number of prime numbers
equal to 2. Looking at equation modulo 8 we get:

4k + 12− k ≡ 1 (mod 8).

So, k ≡ 7 (mod 8) and because k ≤ 12 we get k = 7. Therefore, p1 = p2 = . . . = p7 = 2.
Furthermore, we are looking for solutions of equations:

28 + p28 + p29 + p210 + p211 + p212 = p213

where p8, p9, . . . , p13 are odd prime numbers and one of them is equal to p9 + 4.
Now, we know that when n is not divisible by 3, n2 ≡ 1 (mod 3). Let s be number of
prime numbers equal to 3. Looking at equation modulo 3 we get:

28 + 5− s ≡ 1 (mod 3).

Thus, s ≡ 2 (mod 3) and because s ≤ 5, s is either 2 or 5. We will consider both cases.
i. When s = 2, we get p8 = p9 = 3. Thus, we are looking for prime numbers p10 ≤ p11 ≤
p12 ≤ p13 greater than 3 and at least one of them is 7 (certainly p13 6= 7), that satisfy

46 + p210 + p211 + p212 = p213.

We know that n2 ≡ 1 (mod 5) or n2 = 4 (mod 5) when n is not divisible by 5. It is not
possible that p10 = p11 = 5, because in that case p12 must be equal to 7 and the left-hand
side would be divisible by 5, which contradicts the fact that p13 ≥ 7. So, we proved that
p10 = 5 or p10 = 7.
If p10 = 5 then p11 = 7 because p11 is the least of remaining prime numbers. Thus, we are
looking for solutions of equation

120 = p213 − p212

in prime numbers. Now, from

23 · 3 · 5 = (p12 − p12)(p13 + p12)

that desired solutions are p12 = 7, p13 = 13; p12 = 13, p13 = 17; p12 = 29, p13 = 31.
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If p10 = 7 we are solving equation:

95 + p211 + p212 = p213

in prime numbers greater than 5. But left side can give residues 0 or 3 modulo 5, while
right side can give only 1 or 4 modulo 5. So, in this case we do not have solution.
ii. When s = 5 we get equation:

28 + 45 = 73 = p213,

but 73 is not square or integer and we do not have solution in this case.
Finally, only solutions are:
{(2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 7, 13), (2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 13, 17), (2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 7, 29, 31)}.
NT5 Show that there are infinitely many positive integers c, such that the following
equations both have solutions in positive integers:

(x2 − c)(y2 − c) = z2 − c

and
(x2 + c)(y2 − c) = z2 − c.

Solution: The firs equation always has solutions, namely the triples {x, x+1, x(x+1)−c}
for all x ∈ N. Indeed,

(x2 − c)((x + 1)2 − c) = x2(x + 1)2 − 2c(x2 + (x + 1)2) + c2 = (x(x + 1)− c)2 − c.

For second equation, we try z = |xy − c|. We need

(x2 + c)(y2 − c) = (xy − c)2

or
x2y2 + c(y2 − x2)− c2 = x2y2 − 2xyc + c2.

Cancelling the common terms we get

c(x2 − y2 + 2xy) = 2c2

or

c =
x2 − y2 + 2xy

2
.

Therefore, all c of this form will work. This expression is a positive integer if x and y
have the same parity, and it clearly takes infinitely many positive values. We only need
to check z 6= 0, i.e. c 6= xy, which is true for x 6= y. For example, one can take

y = x− 2

and

z =
x2 − (x− 2)2 + 2x(x− 2)

2
= x2 − 2.

Thus, {(x, x− 2, 2x− 2)} is a solution for c = x2 − 2.
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