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So the inequality in the middle holds as an equality, and this happens whenever a = b =c¢

fromwhichl—}—-—L=1+-ﬂy—=1+ o
z z4+z TTY
But 1+’U — =1+ Y s’ +rz=y"+yz & (2—y)(z+y) = 2(y— ) and the two
VT =z z :

sides of this equality will be of different sign, unless = = y in which case both sides become
0. So z =y, and similarly y = z, thus z =y = 2. : S

Indeed, any triad of equal natural numbers z = y = z is a solution for the given equation,
and so these are all its solutions. ‘ : : - =

)

Solution 2. The given equation is equivalent to
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Now observe that by the well known inequality a?+b%4¢* > ab+bc+ca, with
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This means all inequalities in the above calculations are equalities, and this holds exactly
whenever £ +y = y+ 2z = 2+ z, that is £ = y = 2. By the statement’s demand we need
to have a,b, ¢ integers. And conversely, any triad of equal natural numbers z = y = z is
indeed a solution for the given equation, and so these are all its solutions.

A5. Find the largest positive integer n for which the inequality

a+b+ec

m‘b <
abc+ 1 T VRS

[

(1)

holds for all a,b,c € [0,1]. Here v/abc = abe.

a+b+c
Solution. Let nma, be the sought largest value of n, and let Eoy .(n) = W—F\/ abc.
.y

i
Then E,p(m) — Egpe(n) = Vabe — Vabe and since abe < 1 we clearly have E,p.(m) >
Eope(n) form > n. Soif B p.(n) 2 % for some choice of a, b, ¢ € [0, 1], it must be Npmer < N

‘We use this remark to determine the upper bound n.,.. < 3 by plugging some particular
values of a, b, ¢ into the given inequality as follows:

4y
For (a,b.c) = (1,1,¢).c € [0, 1], inequality (1) implies ¢
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So the last inequality is

3 . : ;
= Obviously, every = € [0:1] is written as u/c for some ¢ € [0;1).

equivalent to:
3 i n+1 ) n ’J’.!--i"l-‘
o924 2z" 422 <32 +3& 32" +12>22 + 2z

1
a:”+l+$‘<‘§

20n(1 — )+ (L - 2) + (@~ 1)@+ +2) 20
(1—z)2z" +1— (2" Lt @) 20, Ve 01
For n = 4. the left hand side of the above becomes (1 —ip){ Pt .1 ~ ® -z
(1-2)(z—1)(2z* +2? - 1) = —(1 —z)?(22% + 7* — 1) which for # = 0.9 is negative. Thus-
Nmae < 3 as claimed. ,
Now, we shall prove that for n = 3 inequality (1) holds for all a,bc € |
] use the following Lemma.

would mean Nuae = 3. We shal
cq+bte<Labet+ 2. .

Lemma. For all a,b, ¢ € [0;1] .
Proof of the Lemma: The required result comes by adding the

side by side

=

&
2_1.):_

0,1], and this R

following two inequalities

0<(a—1)b-1)sa+b<adb+l & atb—absl
0< (ab—1)(c—1) & ab+ c< abe+ 1.

Because of the Lemma, our inequality (1) forn =3 will be proved if ﬂle following wealker

inequality is proved for all a,b,c € [0,1]: '

abe + 2 \3/*- 5 1 : 3
be< = & be < =
abc+1+ - abc+l+ ac__g

Denoting abe-= y € [0;1], this inequality becoimes:
1 3 ' o
ry<te2+2f+ < 3P+ 3o —2yt+3y° —2y+120

y+1 _
24°( —y)+(y—1)y(y+1)+(1-y)20@(1—y)(2y3+1—_y?‘—y)20-

<~
d2f+1-y?—y =13 +@-1)*@+1) 20

The last inequality is obvious because 1—y > 0 an
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Geometry

G1. Let ABC be an equilateral triangle, and P a point on the circumcircle of the triangle
ABC and distinct from A, B and C. If the lines through P and parallel to BC,CA, AB
intersect the lines CA, AB, BC at M, N and Q respectively, prove that M, N and Q are

collinear.

Solution. Without any loss of generality, let P be in the minor arc of the chord AC as
in Figure 1. Since /PNA = ZNPM = 60° and ZNAM = /PMA = 1207, it follox s that
the points A, M, P and N are concvchc This v1e1ds '

LNMP = /NAP. | @)

Figure 1: Exercise G1.

Simllally, since LPMC = Z/M C’Q = 60° and ZCQP = 60°, it follows that the points
P, M, Q and C are concyclic. Thus ,

£LPMQ =180° — LPCQ = 180° — ZNAP 2 180° — ,NMP

This implies ZPMQ + ZNMP = 180°, Wthh shows that M, N and @ belong to the same
line. o

G2. Let ABC be an 1sosceles triangle with AB = AC. Let also c(K, KC) be a circle
tangent to the line AC at point C which it intersects the segment BC' again at an interior
point H. Prove that HK 1 AB.

Solution 1. Let lines K H, AB intersect at 1/ (Figure 5a). From the quadrelateral
KMAC we have

LEMA = 360° — LA~ LACK — LCKM = 360° — £A — 90° — (180° — 2£/KCH) =
N—-LA+2LKCH =90 - LA+ 2(90° — ZACB) = 270° — LA - 2/ACB =270 — LA —
£LACB — LABC = 270° — 180° = 90°,



Figure 2: Exercise G2.

[}

so KH 1 AB as wanted. A ,
nd let B,z Be the second

Solution 2. Let D be a point on ¢ such that AD < AC, &
points of intersection of lines AD and BD with c respectively. Let also N be the second
5b shows Z between B, D. The

point of intersection of line BE with the circle ¢. Figure
argument below can be trivially modified to apply in case D is in the segment B, Z as well.

Itis - ,
AB AD

2 2 . —_—

AB? = AC* = AD AE::)AE iB

This relation aid the fact that ZBAE = LBAD implies that the triangles ABE, ADB are
gimilar. Thus ZABE = ZADB. Also from the cyclic quadrilateral we get ZADB = LZNE.

Therefore ZABE = ZZNE, so AB||NZ. :
Call P the intersection point of BC,NZ. Since AC is tangent to ¢ it is
ZOEH =#BCA (3)
and then

/ZNH + /CNZ=/HNC = £CEH ® /BCA=/ABC =/ZPC=£LBCN+/ZCNZ

= [LZNH=/BCN

= LZNH =/LHZN
int of the arc NZ, so KH L NZ and as AB||NZ we finally

Therefore H is the midpo
[ |

get KH 1 AB as wanted.
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Figure 3: Exercise G3.

G3. Let AB and CD be chords in a circle of center O with A, B, C, D distinct, and let
the lines AB and CD meet at a right angle at point E. Let also M and N be the midpoints
of AC end BD respectively. If MN 1. OF, prove that AD||BC. "

Solution. E can be inside, or outside the circle (Figure 3) but the proof below holds
in both cases; notice that F cannot be on the circle as A, B,C,D are distinct. Let lines
AC and NE meet at point P. Then EN = DN = BN (median in a right triangle), so
LPEC =4NED = /NDE = /BDC = /BAC = L/EAP. Now AB |- CDso EN L AC.
But OM L AC so OM||EN. Similartly ON||EM so NEMO is a parallelogram (possibly
degenerated). As MN L OEF, this parallelogram is a rhombus. Then the chords AC and
BD, being equidistant from O, are equal. Hence their minor arcs are equal, which means
that either AD||BC or AB||CD; the latter contradicts the fact that AB and CD meet at
E. - ]

G4. Let ABC be an acute-angled triangle with circumcircle T, and let O, H be the
triangle’s circumcenter and orthocenter respectively. Let also A' be the point where the
angle bisector of angle BAC meets I'. If A'H = AH, find the measure of angle BAC.

Figure 4: Exercise G4.

Solution. The segment AA’ bisects ZOAH: if ZBCA =y (Figure 4), then ZBOA =
2y, and since OA = OB, it is ZOAB = ZOBA = 90° — y. Also since AH 1 BC, it is

11
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/HAC = 90° — y = ZOAB and the claim follows.
Since AA’ bisects ZOAH and A/H = AH.OA' =

OAA', HAA' are equal. Thus
AH=0A=R @)

O A, we have that the isosceles triangles

where R is the circumradius of triangle ABC' '
Call ZACH = a and recall by the law of sines that AH = 2R'sina, where R’ is the

circumradius of triangle AHC. Then (4) implies

R=2R'sina (59

AC A . ,

But notice that R = R because En_(ﬁ%c_} = 2R, 51(—}53?) = 2R and sin{AHC) =
sin(180° — ABC) = sin(ABC). So (3) gives 1 = 2sina, and @ as an acute ang
be 30°. Finally, ZBAC = 90° —a = 60°.
Remark. The steps in the above proof can be traced backwards making the converse also

true, that is: If ZBAC = 60° then A’ H=AH.

le can only
) ]

9.5 G5. Let the circles ki and ko intersect at two distinct poinls A and B, and let ¢ be a
common tangent of ki and ks that touches them at M and N respectively. Ift L AM and
MN = 2AM, evaluate ZNMB. : .
B

N

7

Figure 5: Exercise G5.

Solution. Let P be the symmetric of A with respect to M (Figure 5).- Then AM = MP
and t L AP, hence the triangle APV is :sosceles with AP as its base, so ZNAP = ZNPA.

We have /BAP = Z/BAM = ZBMN and ZBAN = ZBNM. Thus
180° — /ZNBM = Z/BNM + BMN = £LBAN + LBAP = /NAP = /ZNPA,

since the points B and P lie on different sides of M N).

B and the triangles APB and MNB are congruent

so the quadrangle MBNP is cyclic (
AB = MB, i.e. the triangle AM B is

Hence ZAPB = LMPB = £ZM N
(MN =2AM = AM+MP = AP). From that we get

12



isosceles, and since ¢ is tangent to £y and perpendicular to AM, the center of k; is on AM

hence AM KB is a right-angled triangle. From the last two statements we infer FAMB = 45“:
and so ZNMB = 90° — LAMB = 45°,

]

¢ G6. Let Oy be a point in the exterior of the circle c(O, R) and let O1N, O1D be the
tangent segments from Oy to the circle. On the segment O1N consider the point B such
that BN = R. Let the line from B parallel to ON intersect the segment-O1D at C. If A
is a point on the segment O1D other than C so that BC = BA = a, and zf é (K r) is the
incircle of the triangle O1AB; find the area of ABC in terms oJ it :

Solution. Obviously, the segiment BC is tangent to the circle ¢. Let M be the point of

tangency (Figure 6). Call Q, M the tangency pomnts of BA, BC with c and ¢ respectwelv
and call & the midpoint of segment AC. It is well known that .

AQ = —é(AOl +AB — BOy) and CM = %(301 + BC — C'Ol)' |
and so

AQ+OM=%(ZBC—AO)=a—%AC=a4HO.

Figure 6: Exercise G6.

The triangles KAQ and OCM are similar and this implies

KQ  AQ @[{Q_O‘M‘@L_ A B _ R+4r o5

OM — CM 7~ AQ CM ~ AQ CM AQ+CM a-—HC

r R+r E

IR : (6)
AQ a—HA

If AZ is the bisector segment of triangle BAH it holds

1 il
LAZH =907 = %ZBAC' and. KA = 5(_180" — ZBAC) =90° — ELBAC-
Therefore, from the similar triangles KQA and AHZ we get

AH _ r w RE+r (7)
ZH AQ a—HA '




Also, from the bisector-theorem in triangle ABH it holds

AH - BH
O s
o a+ AH
and from (7) it follows
Rt+r _ AH @ — AH? - BH>
o— HA AFEE BH BH
50 | '
2 2 Y .o = T
HA?=g?— (R+1)’ o HA=a?— (R+1)?

and finally the area of triangle ABC in terms of a, R,7 18!

(ABC)=AH-BH = (R+ r)va = (B+7)?

L, G7.. Let MNPQ be a square of side length i, and A, B', C, D points on the sides MN,
NP, PQ, and QM respectively such that AC- BD = EQ Can the set {AB, BC, CD, DA}

be partitioned into two subsets Sy and Sy of two elements each, so that-each one of the sums
of the elements of S1 and S, are positive integers? :

Solution. The answer is negative. ¢ a

Suppose such a partitioning was possible (Figure 7). Then AB + BC+CD+ DAeN.

But (AB + BC) + (CD + DA) > AC + AC > 2. hence AB+BC +CD+ DA> 2.

On the other hand, AB+BC+CD+DA< (AN+NB)+(BP + PCY+(CQ+@D)+
(DM + MA) = 4, hence AB + BC+CD+ DA=3. '

‘ Obviously one of the sums of the elemients of S; and Sp must be 1 and the other 2.
Without any loss of generality, we may assume that the sum of the elements of S; is 1 and
the sum of the elements of Sy is 2. As AB + BC > AC > 1 we find that 'S # {AB, BC}.
Similarly, S; cannot contain two adjacent sides of the quadrilateral ABCD. Therefore,
without any loss of generality, we may assume that Sy = {AD, BC} and S; = {AB, CD}.
Then AD + BC =1and AB+CD =2.

1
We have AD - BC < % . (AJB-!—ICB)2 = and AB-CD <

According to Ptolemy’s inequality, we have

.(AB+CD)? =1.

e

5

:l=AC’-BD§AB-GD+AD-BC=%1+1zZ,'
hence we have equality all around, which means the quadrilateral ABCD 1s cyclic, AD =

Bl = % and AB = CD = 1, hence ABCD is a rectangle of dimensions 1 and =,

There are many different ways of proving that this configuration is not possible. For example:

1 :
- Suppose ABCD is a rectangle with AD = 3, AB = 1. Then we have AC = BD = ?

and AANB = ACQD (Angle-Side-Angle). Denoting AM = z, MD = y we have AN =

14
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Figure 7: Exercise G7.

1—2z, BN = 1—-y and the following conditions need to be fulﬁlled for some z,y € [0;1]

(Pythagorean Theorem in triangles AMD, ANB, BB'C, where B’ is the pro Jectlon of B on
MQ):

R e 3
ry=g (-2 +(1-y?=1 and 1+ (2y=-17= C(8)

5 13 3 1
But 1+(2y—1)? = 7 implies y € {4 3 } Ify= i then z%+y% = 7 cannot hold. If on the

other hand y = > then (1—z)?+ (1—y)® = 1 implies z = 0, but then (1 um)

+(1-y)? =1
cannot hold. Therefore such a configuration is not possible.

A

15
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Combinatorics

/G‘f. Along a round table are arranged 11 cards with the names (all distinct) of the 11
members of the 16%* JBMO Problem Selection Committee. The distances between each two
consecutive cards are equal. Assume that in the first meeting of the Committee none of its
11 mempbers sits in front of the card with his name. Is it possible to rotate the table by some
angle so that at the end ot least two members of sit in front of the card with their names?-

360° 360° 360° 360°
Solution. Yes it is: Rotating the table by the angles 2- 3 10- 7

117 117 117"
we obtain 10 new positions of the table. By the assumption, it is obvious that every one
of the 11 members of the Committee will be seated in front of the card with his name in
exactly one of these 10 positions. Then by the Pigeonhole Principle there should exist one
among these 10 positions in which at least two of the 11(> 10) members of the Committee
will be placed in their positions, as claimed. ' ' '

C2. n nails nailed on a board are connected by two via a string. E_ach string is colored
in one of n given colors. For any three colors there exist three nails connected by two with
strings in these three colors. Can n be: (a) 6, (b) 72

Sclution. (a) The answer is no: S
Suppose it is possible. Consider some color, say blue. Each blue string is the side of 4
triangles formed with vertices on the given points. As there exist (g) = 5—24 = 10 pairs of

colors other than blue, and for any such pair of colors together with the blue color there
exists -a triangle with strings in these colors, we conclude that there exist at least 3 blue
strings (otherwise the number of triangles with a blue string as a side would be at most
2.4 =8, a contradiction). The same is true for any color, so altogether there exist at least

6 - 3 = 18 strings, while we have just (J) = &% = 15 of them.

Figure 8: Exercise C2.

(b) The answer is yes (Figure 8):

Il

=



Put the nails at the vertices of a regular 7-gon (Figure 8) and color each one of its sides
in a different color. Now color each diagonal in the color of the unique side parallel to it.
It can be checked directly that each triple of colors appears in some triangle (because of
symumetry, it is enough to check only the triples containing the first color). R

Remark. The argument in (a) can be applied to any even n. The argument. in (b) can
be applied to any odd n = 2k + 1 as follows: first number the nails as 0,1,2...,2k and
similarly number the colors as 0,1,2...,2k. Then connect nail z with nail y by & string of
color z + y(modn). For each triple of colors (p,q,7) there are vertices z,, z connected hy
these three colors. Indeed, we neéd to solve (modn) the system ' '

(#)(z+y=p z+z=q y+z=r)

Adding all three, we get 2(z+y+2) = p+g-+rand mﬁitiplying by k+1lwegetz+y+z=
(k+ 1)(p+ q+7). We can now find z,y, z from the identities (). -~

C3. In a circle of diameter 1 consider 65 points no three of which are collinear. Prove
that there exist 3 among these points which form a triangle with area less then or equal to
1 : ,

T2 '
Solution. Lemma: If a triangle ABC lies in a rectangle K LM N with sides KL = a

and LM = b, then the area of the triangle is less then or equal to %.

Proof of the lemma: Without any loss of generality assume that among the distance of
A, B,C from KL, that of A is between the other two. Let £ be the line through A and

parallel to K L. Let D be the intersection of £, BC and z,y the distances of B,C from {
AD(x b.
respectively. ‘Then the area of ABC equals ——(;j_—) < %—, since AD <aandz+y <b

and we are done. : ' : ; i
Now back to our problem, let us cover the circle with 24 squares of side 6 and 8 other

irregular and equal figures as shown in Figure 9, with boundary consisting of an arc on
the circle and three line segments. Call S = ADNM one of these figures. One of the

3
line segments in the boundary of S is of length AD = AB — DB = VAC? — BC? — o=

2 2
2N 9 —1 - ,
\Kl) - (—) e \/_3 . The boundary segment M N goes through the center C of

2 6 3

the circle, forming with the horizontal lines an angle of 459, The point in-S with maximum
distance from the boundary segment AB is the endpoint M of the arc on the boundary of

4 F=isosceles 2 1 2 1 - ?-' - 2
S. This distance equals ME = MF — EF M Paoscl %CM’ —FT % —F 3‘%’“

P

So S can be put inside a rectangle R with sides parallel to AD, ND of lengths and

3v2 -2 _ L ,
T So the triangle formed by any three points inside this figure, has an area less or

¥d)

18
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Lt L v2-1 3v2-2 8-5/2 1
equal to - 3 = & =
1 :
Also, the triangle formed by any three points inside any square of side 6 has an area
1 11 1
1 alto —- == = —
ess or equal to o - =+ = = o

By the Pigeonhole Principle, we know that among the 65 given points there exist 3
inside the same one of the 32 squares and irregular figures of the picture covering the given
circle. Then according to the above, the triangle formed by these 3 points has an area not

1 : _
exceeding = as wanted. ; - m

Figure 9: Exercise C3.

19
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Number Theory

NT1. Ifa,b are integers and s = a® + b — 60ab(z + b) > 2012, find the least possible
value of s. ,

Solution. It is s = (a + b)® — 63ab(a + b) which gives the same residue module 7 as
(a+b)®. But the residues modulo 7 of perfect cubes can only be 0,1 or 6. So the residue of
s modulo 7 is 0,1 or 6. Now for a =6,b= —1 we get s = 2015 > 2012 and this is the least
possible value of s because the numbers 2012, 2013, 2014 give 3,4 and 5 as residues mod7
which are distinct from 0, 1,6, and so 2012, 2013, 2014 cannot be s for any choice of a,b. &

73  NT2. Do there exist prime numbers p and q such that p*(p® — 1) =g(g+1)?

Solution. Write the given equation in the form

Pl-DE +p+1) =qlg+1). SR )

First observe that it must not be p = g, since in this case the left hand side of (9) is greater
than its right hand side. Hence, since p and g are distinct primes, (9) immediately yields
p? | g+1, that is '

g=ap’—1 , AT (10)

for some a € N. Since p and g are both primes, by (9) we get the f_ollowing cases:
Case 1: ¢ | p— 1, that is

for some b € N. Substituting (11) into (10), and using the fact that a > 1 and b > 1, we
obtain ;
g=abg+1)?-12>(g+1)°~1=¢"+2q,

a contradiction.
Case 2: q | p* +p+ 1, that is

p*+p+1=1bg | | (12)
for some b € N. Substituting (10) into (12), we get
p?+p+1=blap’ —1) (13)
If @ > 2, then from (13) it follows that
PP Hp+12> 207 -1,

or equivalently, p+ 1> (p— 1)(p+ 1), that is, (p + 1)(2 — p) > 0. This implies that p = 2,
and so g | 22+ 2+ 1= 7. Hence, ¢ =7, but the pair p =2 and ¢ = 7 does not satisfy the
equation (9).

21
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Hence, it must be a = 1. Then if b > 3. (13) implies
pP4p+123p°-1),

or equivalently, 4 > p(2p — 1), which is obviously impossible. .-

Thus, it must be a = 1 and b € {1,2}. For a = b = 1, (13) implies that p = 2, which
by (12) again yields ¢ = 7, which is impossible. Finally, for @ = 1 and b = 2, (13) gives
p(p — 1) = 3, which is c:}ea,rlj) not satisfied for any prime p.

Hence, there do not exist prlme numbers p and g which satisfy given equation. ]

NT3. Decipher the equaﬁity
(VEE-TA): (GRE + ECE) = G,

assuming that the number GREECE has a mazimum value. It is supposed that each letter
corresponds to a unique digit from 0 to 9 and different letters correspond to different digits,
and also that all letters G, E,V and I are different from 0. Also, the notation @, .1y
stands for the number a, - 10" + - -+ + 10! - a; +ag. - :

Solution. Denote

~VER-TA, y=GRE +ECE, z=G?.
Then obvioﬁsly, we have

(201 + 131 or 231+101) <y < (8794969 or 869+ 979 or. 769 + 989)
= 332<y<1848=102-98<z<987—-10=4 <z <977,

hence it follows that

Nej
-~J
~J

4
1848 3

This shows that z = GR® € {1,2}. Hence, if R > 1, then R® > 1, which implies that
9 > GR® > @. Thus, if R > 1, then it must be G < 2. In view of this and the assumption
of the problem that the number GREECE has a maximum value, we will consider the case
when R = 0 hoping to get a solution with G > 2. Then GR® = Go = 1 for all digits G and
E with 1 < G, E <9, and therefore, the above equality becomes

el
F

1A
|

=>1Lz52

@IH
o
]

VER-IA=GRE+ ECE,

" which substituting R = 0, can be written as

VEO = GOE + ECE +TA. - (14)

Now we consider the following cases: :
Case 1: G =9. Then V < 8, so VEO < 900, while the right hand side of (1) is greater
than 900. This is impossible, and no solution exists in this case.
Case 2: G = 8. Then (14) becomes

VEQG=80E+ ECE +1IA4, (15)
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hence it immediately follows that V = 9. For V =9, (15) becomes

0EQ =80F + ECE + 14, - - (16)

Notice that for £ > 2, the right hand side of (16) is greater than 1000, while the left hand
side of (16) is less than 1000. Therefore, it must be E < 1, that is, E = 1 in view of the
fact that R = 0. Substituting £ = 1 into (16), we get

9I0=801+1CT+T4, - PR (17)
hence it follows that
109=1CT+TA. =~ . (18)

But the right hand side of (18) is greater than 121. This shows that G =8 does not lead to

any solution.
Case 3: G = 7. Then (14) becomes

VEG=T0E+ECE+IA S (9)

Thus it must be V > 8.
Subcase 3(a): V = 8. Then (19) gives

SE0=T0E+ ECE + 14, L ~(20)

hence we immediately obtain £ =1 (sfnce the right hand side of (6) must be lass than 900).
For E = 1, (20) reduces to : '

109 =1C1 + I4, _ (21)

which is impossible since 1C1 > 121.
Subcase 3(b): V = 9. Then (19) gives

0EQ =T70E + ECE + T4, B (22)

hence we immediately obtain E < 2 (since the right hand side of (7) must be less than
1000). For E = 2, (22) reduces to '

218 = 2C2 + I A, - (23)
which is impossible since 2C2 > 232. Finally, for £ = 1, (22) reduces to
209 =1C1+ T A. ' ' (24)

Since it is required that the number GREECE has a maximum value, taking C' = 8 into
(24) we find that

98 = T4, (25)

[
oo



which vields 8 = 4 = . This is impossible since must be A 5 C. Since C £ G =7, then
taking C = 6 into (24) we obtain

= [4, - (26)
hence we have I = 4 and A = 8. Previously, we have obtain G =7, R=0,V =9, E=1
and C = 6. For these values, we obtain that GREECE = 701161 is the des1red maximum
value. ) ' B

1,« NT4. Determine all triples (m,n, p) satisfying
n?=mf+nt+p+1 . (a7

where rn and n are integers and p is a prime number.

Solution. By Fermat’s theorem n% = n?(modp), therefore m2+n2+p+1 = n(modp) =
m? = —1(modp).
Case 1: p = 4k + 3. We have (m?)#**! = (—1)%¥*1(modp). Therefore,

mP~t = —1(modp) - : (28)
and p does not divide m. On the other hand, by Fermat’s theorem
mP~! = 1(modp) o - (29)

(28) and (29) yield p = 2: Thus, p #4k+3.

Case 2: p=4k+ 1. Let us cons1der (2() in mod4. n? =0 or 1 in mod4. In both cases
n% = n2(1nod4). From (27) we get n? = m?+n?+1+1(mod4). Therefore, m? = —2(mod4),
and again there is no solution. A

Case 3: p = 2. The given equation is written as

4 2

nt—n?-3=m
Let [ = n?. Readily, we do not get any solution for-{ =0, 1. If [ = 4, then there are four
solutions: (3,2,2),(—3,2,2),(3,—2,2),(—3,—2,2). There is no solution for [ > 4, since in
this case | '
lefzﬁﬂﬂ+l<wf=?—lh3<ﬁ

Thus, (27) has four solutions: (3,2,2),(=3,2,2),(3,-2,2) ), (=3,-2,2) and we are done. =

[{ @ Find all the positive integers z, y, z, t such that 2% - 3¥ + 5% =Tt

Solution. Reducing modulo 3 we get 5% = 1, therefore z is even, z = 2¢, ¢ € M. -
Next we prove that ¢ is even. Obviously, ¢ 2 2. Let us suppose that tisodd, t =2d+1,
d € N. The equation becomes 2% - 3¥ + 25¢ = 7 - 49,
If z > 2, reducing modulo 4, we get 1 = 3, contradiction.
For z = 1, we have 2-3¥ 25 =T 49¢. and, reducing modulo 24, we obtain 2.3V + 1 =
7=>24|2(3¥—-3),ie 4]3¥! -1, which means that y — 1 is even. Then, y = 2b+ 1,

be N.
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We obtain 6-9% +25¢ = 7. 499, and, reducing modulo 5, we get (— 1)b = 2-(—1)%, which
is false, for all b,d € N. Hence t iseven, ¢t =24. d € N

The equation can be written as 2% . 3v = 95¢ — 494 < 27 . 3¥ = (Td - 5“) (7’“’" -+ 5c) .

As ged (74— 55,7 +5°) = 2 and 7° 4+ 5¢ > 2. there exist exactly three possibilities:(1)
P B gt [ T-5r=2.5 75 =2
7d +5¢=2.3v " . (H) d + 56 = oz—1 : (3) 7d + 5= l).'.t 1, q¢

Case (1). We have 7% = 2772 4.3V anq, reducmfz modulo 3, we get 9"”"’ 1 (mod3),
hence z — 2 is even, ie. z = 2a + 2, where ¢ & N since ¢ = 0 Would mean 3 39 +1= ?
which is impossible (even = odd). :

We obtain 7¢ — 5 = 2-4° 2% 7¢ = | (;0d 4) = d = 2¢, e € N. Then 49° — 5¢ =

248 2P 56 = 1 (mod 8) = ¢ = 2f, f € N. We obtain 40° — 257 = 2: 42 283 g — 2 (mod3),
false. In conclusion, in this case there are no solutions to the equation :

Case (2). From 257! = 794 5¢ > 12, we obtain « > 5. Then 7¢ + 5°¢ = (mod 4), i.e
3441 =0 (mod 4), hence d is odd. As 'Td 8+2-3¥ > 11 wegetd> 2, hence d = 2e+1,
e €N, :

As in the previous case, from 7¢ = 22-2 4 3¥, reducing modulo 3, we obtain z = 2a + 2,
with @ > 2 (because z > 5). We get 7% = 4%+ 3% ie 7. 49° = 4° 4 3V, hence, reducing
modulo 8, we obtain 7 = 3¥, which is false, because 3¥ is congruent mods either to 1 (if y is
even) or to.3 (if y is odd). In conclusion, in this case there are no solutions to the equation.

Case (3). From 7¢ = 5¢ +2, it follows that the last digit of 7% is 7, hence d = 4k + 1,
kEeN. : . ,
If ¢ > 2, from 7%*! == 5° 4- 2, reducing modulo 25, we obtain 7 = 2 (mod25), which is
false. ' _
Forc=1wegetd=1,and thesolutionz =3, y=1,2=t=2. : m

NT6. Ifa,b,c,d are integers and A = 2(a — 2b+ c)* + 2(b — 2¢ + a)* + 2(c — 2a + b)%,
2
B =d(d+1)(d+2)(d+ 3) + 1, prove that ('\/Z+ 1) + B cannot be a perfect square.

Solution. First we prove the following Lemma
Lemma: Ifz,y,z real numbers such that t+y+2z = 0, then 2zt +yt+2%) = (22 +92 +22)2
Proof of the Lemma: ; ; ,

iyttt = ot R+ 2 :zg(y+z)2+y2(z+x)2+;2(:c+y)2
= 2(zy + 2% + 220 4 2yz(zs + y + 2)
= (2 + g2+ gt — gt

and the claim follows.
Now back to our problem notice that (a — 26+ ¢) + (b— 2c+a) + (¢ — 2a + b) = 0, thus
according to the lemma it holds

'i:-J

b+c)t +2(0—2c+a) +2(c—2a+b)*
b+c)’ + (b—QC-i—a?—r(c—Qaer)“J = [6(a® + " + & - ab — be — ca))’

A = 2a—
[(a—

lQ
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Since a® + b2 + ¢ > ab -+ bc + ca we have that
VA+1=6(®+0*+c—ab—bc—ca)+1
In addition, it is easy to check that
=d(d+1)(d+2)(d+3)= (& +3d+1)°

Let us set 6(a® + b* + c —ab—bc—ca)+1=m,d*+3d+1=n We need to prove that

the number (\/— + 1) + B = m? +n? is not a perfect square . ‘

Since both m,n are odd integers, both m? n? are integers of the form 4k + 1, so the
number m2+n? is an integer of the form 4k+2. But it is well known that all perfect squares
are of the form 4k or 4k + 1, and we are done. - g ‘ u

NT7. Find all natural numbers a,b, ¢ for which 1997% + 15° = 2012¢.

Solution. 1997% + 15° = 2012¢ = 1 + (1) = 0(mod4), so b is an odd number..

1997¢ + 15 = 2012°¢ = 1 4+ 0 = 2¢(mod3), so ¢ is even, say ¢ = 2¢;.

We intend to consider the given equation modulo 8 and for this reason we discern two
cases: ‘ T ‘

(1): c=1. Clearly then a =b =1 and a = b = ¢ = 1 is a solution. This is actually the
only solution of the given equation since in the remaining case where ¢ > 1 it will be shown
that there exist no solution.

(2): ¢ > 1. Then 2012° = (4 - 503)° is a multiple of 8 and =

1997 + 15% = 2012¢ = 5% + (—1)> = 5% + (1) = 0(mod8), so a is even, say a = 2a1.
Hence _

3. 54 — 15° — 2012° — 1997 = (20127 — 1997%) - (2012° + 1997“):

Observe that 2012 — 1997*,2012% + 199'°* are both greater than 1 and prime to each
other as ged(2012¢t — 1997%1,2012% + 1997%) = gcd(2012° — 1997%, 2 . 1997%) = 1. So
there exist two cases: .

2012 — 1997 = 5P £ 20120 — 1997 = 3°

Case I py19e 4 19070 =30 * 92 % gg190 1 19978 = 8¢

Case 1: . )
9012% — 1997% = 5% = 2% — 2% = 0(mod5) = ¢; = a1(mod5)
90122 4 1997 = 3% = 2% 4 2% = ((mod5) = ¢; = a1 + 1(mod5)

a contradiction.

Case 2:
9012¢ — 1997% = 3°

2012 + 1997 = 5°

Since b is an odd number we get 2012% + 1997% = 5*(inod3) = 2% + 2 = 5° = 2(mod3)
S0 aj,c; are even numbers, say a; = 20z, ¢; = 2¢p. Then

(2012° — 1997%) - (2012 + 1997°2) = 8"
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But ged(2012°% — 1997%2,2012° 4 1997%2) = 1 and the above implies 20122 — 1997% = 1.
But then mod4, we get 0 — 1 = (mod4), a contradiction.
Therefore there exists no solution for ¢ > 1.
Hence a = b=c=1 is the only solution.
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