
Chapter 1

2010 Shortlist JBMO - Problems

1.1 Algebra

A1 The real numbers a, b, c, d satisfy simultaneously the equations

abc− d = 1, bcd− a = 2, cda− b = 3, dab− c = −6.

Prove that a+ b+ c+ d 6= 0.

A2 Determine all four digit numbers abcd such that

a(a+ b+ c+ d)(a2 + b2 + c2 + d2)(a6 + 2b6 + 3c6 + 4d6) = abcd.

A3 Find all pairs (x, y) of real numbers such that |x|+ |y| = 1340 and x3+y3+2010xy =

6703.

A4 Let a, b, c be positive real numbers such that abc(a+ b+ c) = 3. Prove the inequality

(a+ b)(b+ c)(c+ a) ≥ 8,

and determine all cases when equality holds.

A5 The real positive numbers x, y, z satisfy the relations x ≤ 2, y ≤ 3, x + y + z = 11.
Prove that

√
xyz ≤ 6.

1.2 Combinatorics

C1 There are two piles of coins, each containing 2010 pieces. Two players A and B play
a game taking turns (A plays first). At each turn, the player on play has to take one
or more coins from one pile or exactly one coin from each pile. Whoever takes the last
coin is the winner. Which player will win if they both play in the best possible way?

C2 A 9× 7 rectangle is tiled with pieces of two types, shown in the picture below.1
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Find all possible values of the number of the 2 × 2 pieces which can be used in such a
tiling.

1.3 Geometry

G1 Consider a triangle ABC with ∠ACB = 90◦. Let F be the foot of the altitude from
C. Circle ω touches the line segment FB at point P , the altitude CF at point Q and the
circumcircle of ABC at point R. Prove that points A, Q, R are collinear and AP = AC.

G2 Consider a triangle ABC and let M be the midpoint of the side BC. Suppose
∠MAC = ∠ABC and ∠BAM = 105◦. Find the measure of ∠ABC.

G3 Let ABC be an acute-angled triangle. A circle ω1(O1, R1) passes through points B

and C and meets the sides AB and AC at points D and E, respectively. Let ω2(O2, R2)

be the circumcircle of the triangle ADE. Prove that O1O2 is equal to the circumradius
of the triangle ABC.

G4 Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L ∈ BC,K ∈
AC). The perpendicular bisector of BK intesects the line AL at point M . Point N lies
on the line BK such that LN ‖MK. Prove that LN = NA.

1.4 Number Theory

NT1 Find all positive integers n such that n2n+1 + 1 is a perfect square.

NT2 Find all positive integers n such that 36n − 6 is a product of two or more consecu-
tive positive integers.



Chapter 2

2010 Shortlist JBMO - Solutions

2.1 Algebra

A1 The real numbers a, b, c, d satisfy simultaneously the equations

abc− d = 1, bcd− a = 2, cda− b = 3, dab− c = −6.

Prove that a+ b+ c+ d 6= 0.
Solution. Suppose that a+ b+ c+ d = 0. Then

abc+ bcd+ cda+ dab = 0. (1)

If abcd = 0, then one of numbers, say d, must be 0. In this case abc = 0, and so at
least two of the numbers a, b, c, d will be equal to 0, making one of the given equations
impossible. Hence abcd 6= 0 and, from (1),

1

a
+

1

b
+

1

c
+

1

d
= 0,

implying
1

a
+

1

b
+

1

c
=

1

a+ b+ c
.

It follows that (a+b)(b+c)(c+a) = 0, which is impossible (for instance, if a+b = 0, then
adding the second and third given equations would lead to 0 = 2+ 3, a contradiction).
Thus a+ b+ c+ d 6= 0.

A2 Determine all four digit numbers abcd such that

a(a+ b+ c+ d)(a2 + b2 + c2 + d2)(a6 + 2b6 + 3c6 + 4d6) = abcd.

3
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Solution. From abcd < 10000 and

a10 ≤ a(a+ b+ c+ d)(a2 + b2 + c2 + d2)(a6 + 2b6 + 3c6 + 4d6) = abcd

follows that a ≤ 2. We thus have two cases:
Case I: a = 1.
Obviously 2000 > 1bcd = (1 + b + c + d)(1 + b2 + c2 + d2)(1 + 2b6 + 3c6 + 4d6) ≥
(b + 1)(b2 + 1)(2b6 + 1), so b ≤ 2. Similarly one gets c < 2 and d < 2. By direct check
there is no solution in this case.
Case II: a = 2.
We have 3000 > 2bcd = 2(2 + b + c + d)(4 + b2 + c2 + d2)(64 + 2b6 + 3c6 + 4d6) ≥
2(b+ 2)(b2 + 4)(2b6 + 64), imposing b ≤ 1. In the same way one proves c < 2 and d < 2.
By direct check, we find out that 2010 is the only solution.

A3 Find all pairs (x, y) of real numbers such that |x|+ |y| = 1340 and x3+y3+2010xy =

6703.
Solution. Answer: (−670;−670), (1005,−335), (−335; 1005).
To prove this, let z = −670. We have

0 = x3 + y3 + z3 − 3xyz =
1

2
(x+ y + z)((x− y)2 + (y − z)2 + (z − x)2).

Thus either x + y + z = 0, or x = y = z. In the latter case we get x = y = −670, which
satisfies both the equations. In the former case we get x+ y = 670. Then at least one of
x, y is positive, but not both, as from the second equation we would get x + y = 1340.
If x > 0 ≥ y, we get x − y = 1340, which together with x + y = 670 yields x = 1005,
y = −335. If y > 0 ≥ x we get similarly x = −335, y = 1005.

A4 Let a, b, c be positive real numbers such that abc(a+ b+ c) = 3. Prove the inequality

(a+ b)(b+ c)(c+ a) ≥ 8,

and determine all cases when equality holds.
Solution. We have

A = (a+ b)(b+ c)(c+ a) = (ab+ ac+ b2 + bc)(c+ a) = (b(a+ b+ c) + ac)(c+ a),

so by the given condition

A =

(
3

ac
+ ac

)
(c+ a) =

(
1

ac
+

1

ac
+

1

ac
+ ac

)
(c+ a).
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Aplying the AM-GM inequality for four and two terms respectively, we get

A ≥ 4 4

√
ac

(ac)3
· 2
√
ac = 8.

From the last part, it is easy to see that inequality holds when a = c and 1
ac

= ac, i.e.
a = b = c = 1.

A5 The real positive numbers x, y, z satisfy the relations x ≤ 2, y ≤ 3, x + y + z = 11.
Prove that

√
xyz ≤ 6.

Solution. For x = 2, y = 3 and z = 6 the equality holds.
After the substitutions x = 2 − u, y = 3 − v with u ∈ [0, 2), v ∈ [0, 3), we obtain that
z = 6 + u+ v and the required inequality becomes

(2− u)(3− v)(6 + u+ v) ≤ 36. (1)

We shall need the following lemma.
Lemma. If real numbers a and b satisfy the relations 0 < b ≤ a, then for every real
number y ∈ [0, b) the inequality

a

a+ y
≥ b− y

b
(2)

holds.
Proof of the lemma. The inequality (2) is equivalent to

ab ≥ ab− ay + by − y2 ⇔ y2 + (a− b)y ≥ 0.

The last inequality is true, because a ≥ b > 0 and y ≥ 0.
The equality in (2) holds if y = 0. The lemma is proved. �

By using the lemma we can write the following inequalities:

6

6 + u
≥ 2− u

2
, (3)

6

6 + v
≥ 3− v

3
, (4)

6 + u

6 + u+ v
≥ 6

6 + v
. (5)

By multiplying the inequalities (3), (4) and (5)1 we obtain:

6 · 6 · (6 + u)

(6 + u)(6 + v)(6 + u+ v)
≥ 6(2− u)(3− v)

2 · 3(6 + v)
⇔

1 actually (5) does not follow from the lemma (it is not known that 6 + u ≥ 6 + v) but is nevertheless
true
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(2− u)(3− v)(6 + u+ v) ≤ 2 · 3 · 6 = 36⇔ (1).

By virtue of lemma, the equality holds if and only if u = v = 0.
Alternative solution. With the same substitutions write the inequality as

(6− u− v)(6 + u+ v) + (uv − 2u− v)(6 + u+ v) ≤ 36.

As the first product on the lefthand side is 36− (u+ v)2 ≤ 36, it is enough to prove that
the second product is nonpositive. This comes easily from |u − 1| ≤ 1, |v − 2| ≤ 2 and
uv − 2u− v = (u− 1)(v − 2)− 2, which implies uv − v − 2u ≤ 0.

Alternative solution. From the AM-GM inequality we have

x

2
· y
3
· z
6
≤

 x

2
+

y

3
+

z

6
3

3

=

(
3x+ 2y + z

18

)3

=

(
(x+ y + z) + 2x+ y

18

)3

≤

(
11 + 2 · 2 + 3

18

)3

= 1, and the conclusion follows readily.

2.2 Combinatorics

C1 There are two piles of coins, each containing 2010 pieces. Two players A and B play
a game taking turns (A plays first). At each turn, the player on play has to take one
or more coins from one pile or exactly one coin from each pile. Whoever takes the last
coin is the winner. Which player will win if they both play in the best possible way?
Solution. B wins.
In fact, we will show that A will lose if the total number of coins is a multiple of 3 and
the two piles differ by not more than one coin (call this a balanced position). To this end,
firstly notice that it is not possible to move from one balanced position to another. The
winning strategy for B consists in returning A to a balanced position (notice that the
initial position is a balanced position).
There are two types of balanced positions; for each of them consider the moves of A
and the replies of B.
If the number in each pile is a multiple of 3 and there is at least one coin:
- if A takes 3n coins from one pile, then B takes 3n coins from the other one.
- if A takes 3n+ 1 coins from one pile, then B takes 3n+ 2 coins from the other one.
- if A takes 3n+ 2 coins from one pile, then B takes 3n+ 1 coins from the other one.
- if A takes a coin from each pile, then B takes one coin from one pile.
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If the numbers are not multiples of 3, then we have 3m+1 coins in one pile and 3m+2

in the other one. Hence:
- if A takes 3n coins from one pile, then B takes 3n coins from the other one.
- if A takes 3n + 1 coins from the first pile (n ≤ m), then B takes 3n + 2 coins from the
second one.
- if A takes 3n + 2 coins from the second pile (n ≤ m), then B takes 3n + 1 coins from
the first one.
- if A takes 3n + 2 coins from the first pile (n ≤ m− 1), then B takes 3n + 4 coins from
the second pile
- if A takes 3n + 1 coins from the second pile (n ≤ m), then B takes 3n − 1 coins from
the first one. This is impossible if A has taken only one coin from the second pile; in
this case B takes one coin from each pile.
- if A takes a coin from each pile, then B takes one coin from the second pile.
In all these cases, the position after B’s move is again a balanced position. Since the
number of coins decreases and (0, 0) is a balanced position, after a finite number of
moves, there will be no coins left after B’s move. Thus, B wins.

C2 A 9× 7 rectangle is tiled with pieces of two types, shown in the picture below.

Find the possible values of the number of the 2× 2 pieces which can be used in such a
tiling.

Solution. Answer: 0 or 3.
Denote by x the number of the pieces of the type ”corner” and by y the number of the
pieces of the type 2× 2. Mark 20 squares of the rectangle as in the figure below.

Obviously, each piece covers at most one marked square.
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Thus, x+ y ≥ 20, (1) and consequently 3x+ 3y ≥ 60, (2).
On the other hand, computing the area of the rectangle, we obtain 3x+ 4y = 63, (3).
From (2) and (3) it follows that y ≤ 3 and from (3), 3 | y.
The proof is finished if we produce tilings with 3, respectively 0, 2× 2 tiles:

2.3 Geometry

G12 Consider a triangle ABC with ∠ACB = 90◦. Let F be the foot of the altitude from
C. Circle ω touches the line segment FB at point P , the altitude CF at point Q and the
circumcircle of ABC at point R. Prove that points A, Q, R are collinear and AP = AC.
Solution. Let M be the midpoint of AB and let N be the center of ω. Then M is the
circumcenter of triangle ABC, so points M , N and R are collinear. From QN ‖ AM we
get ∠AMR = ∠QNR. Besides that, triangles AMR and QNR are isosceles, therefore
∠MRA = ∠NRQ; thus points A, Q, R are collinear.

Right angled triangles AFQ and ARB are similar, which implies
AQ

AB
=

AF

AR
, that is

AQ · AR = AF · AB. The power of point A with respect to ω gives AQ · AR = AP 2.
Also, from similar triangles ABC and ACF we get AF · AB = AC2. Now, the claim
follows from AC2 = AF · AB = AQ · AR = AP 2.

G2 Consider a triangle ABC and let M be the midpoint of the side BC. Suppose
∠MAC = ∠ABC and ∠BAM = 105◦. Find the measure of ∠ABC.
Solution. The angle measure is 30◦.
Let O be the circumcenter of the triangle ABM . From∠BAM = 105◦ follows∠MBO =

15◦. Let M ′, C ′ be the projections of points M , C onto the line BO. Since ∠MBO = 15◦,

then ∠MOM ′ = 30◦ and consequently MM ′ =
MO

2
. On the other hand, MM ′ joins the

midpoints of two sides of the triangle BCC ′, which implies CC ′ = MO = AO.

2 also problem 2, JTST no. 3, Romania, 2012
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The relation ∠MAC = ∠ABC implies CA tangent to ω, hence AO ⊥ AC. It follows
that4ACO ≡ 4OCC ′, and furthermore OB ‖ AC.

Therefore∠AOM = ∠AOM ′−∠MOM ′ = 90◦−30◦ = 60◦ and∠ABM =
∠AOM

2
= 30◦.

G3 Let ABC be an acute-angled triangle. A circle ω1(O1, R1) passes through points B

and C and meets the sides AB and AC at points D and E, respectively. Let ω2(O2, R2)

be the circumcircle of the triangle ADE. Prove that O1O2 is equal to the circumradius
of the triangle ABC.
Solution. Recall that, in every triangle, the altitude and the diameter of the circumcircle
drawn from the same vertex are isogonal. The proof offers no difficulty, being a simple
angle chasing around the circumcircle of the triangle.
Let O be the circumcenter of the triangle ABC. From the above, one has ∠OAE =

90◦ − ∠B. On the other hand ∠DEA = ∠B, for BCED is cyclic. Thus AO ⊥ DE,
implying that in the triangle ADE cevians AO and AO2 are isogonal. So, since AO is a
radius of the circumcircle of triangle ABC, one obtains that AO2 is an altitude in this
triangle.
Moreover, since OO1 is the perpendicular bisector of the line segment BC, one has
OO1 ⊥ BC, and furthermore AO2 ‖ OO1.
Chord DE is common to ω1 and ω2, hence O1O2 ⊥ DE. It follows that AO ‖ O1O2, so
AOO1O2 is a parallelogram. The conclusion is now obvious.

G4 Let AL and BK be angle bisectors in the non-isosceles triangle ABC (L ∈ BC,K ∈
AC). The perpendicular bisector of BK intesects the line AL at point M . Point N lies
on the line BK such that LN ‖MK. Prove that LN = NA.
Solution. The point M lies on the circumcircle of 4ABK (since both AL and the per-
pendicular bisector of BK bisect the arc BK of this circle). Then ∠ABK = ∠AMK =

∠NLA. Thus ABLN is cyclic, whence ∠NAL = ∠NBL = ∠CBK = ∠NLA. Now it
follows that LN = NA. (Alternatively, we could finish as follows: ABLN is cyclic and
the angle bisector of ∠ABL bisects the arc AL of the circumcircle of ABLN . Thus N

lies on the perpendicular bisector of AC, which means that LN = NA.)

2.4 Number Theory

NT1 Find all positive integers n such that n2n+1 + 1 is a perfect square.
Solution. Answer: n = 0 and n = 3.



10 CHAPTER 2. 2010 SHORTLIST JBMO - SOLUTIONS

Clearly n2n+1+1 is odd, so, if this number is a perfect square, then n2n+1+1 = (2x+1)2,
x ∈ N, whence n2n−1 = x(x+ 1).
The integers x and x + 1 are coprime, so one of them must divisible by 2n−1, which
means that the other must be at most n. This shows that 2n−1 ≤ n+ 1.
An easy induction shows that the above inequality is false for all n ≥ 4, and a direct
inspection confirms that the only convenient values in the case n ≤ 3 are 0 and 3.

NT2 Find all positive integers n such that 36n − 6 is a product of two or more consecu-
tive positive integers.
Solution. Answer: n = 1.
Among each four consecutive integers there is a multiple of 4. As 36n − 6 is not a
multiple of 4, it must be the product of two or three consecutive positive integers.
Case I. If 36n − 6 = x(x + 1) (all letters here and below denote positive integers), then
4 ·36n−23 = (2x+1)2, whence (2×6n+2x+1)(2×6n−2x−1) = 23. As 23 is prime, this
leads to 2× 6n + 2x+ 1 = 23, 2× 6n − 2x− 1 = 1. Subtracting these yields 4x+ 2 = 22,
x = 5, n = 1, which is a solution to the problem.
Case II. If 36n − 6 = (y − 1)y(y + 1), then

36n = y3 − y + 6 = (y3 + 8)− (y + 2) = (y + 2)(y2 − 2y + 3).

Thus each of y + 2 and y2 − 2y + 3 can have only 2 and 3 as prime factors, so the same
is true for their GCD. This, combined with the identity y2− 2y+3 = (y+2)(y− 4)+11

yields GCD(y + 2; y2 − 2y + 3) = 1. Now y + 2 < y2 − 2y + 3 (if y > 2; y = 1 and y = 2

do not work), so y+2 = 4n, y2− 2y+3 = 9n. The former identity implies y is even and
now by the latter one 9n ≡ 3 (mod 4), while in fact 9n ≡ 1 (mod 4) - a contradiction.
So, in this case there is no such n.


