Power of a Point
 Solutions

Yufei Zhao
Trinity College, Cambridge
yufei.zhao@gmail.com

April 2011

Practice problems:

1. Let Γ_{1} and Γ_{2} be two intersecting circles. Let a common tangent to Γ_{1} and Γ_{2} touch Γ_{1} at A and Γ_{2} at B. Show that the common chord of Γ_{1} and Γ_{2}, when extended, bisects segment $A B$.

Solution. Let the common chord extended meet $A B$ at M. Since M lies on the radical axis of Γ_{1} and Γ_{2}, it has equal powers with respect to the two circles, so $M A^{2}=M B^{2}$. Hence $M A=M B$.
2. Let C be a point on a semicircle of diameter $A B$ and let D be the midpoint of arc $A C$. Let E be the projection of D onto the line $B C$ and F the intersection of line $A E$ with the semicircle. Prove that $B F$ bisects the line segment $D E$.

Solution.

Let Γ denote the circle with diameter $A B$, and Γ_{1} denote the circle with diameter $B E$. Since $\angle A F B=90^{\circ}, \Gamma_{1}$ passes through F. Also since $\angle D E B=90^{\circ}, \Gamma_{1}$ is tangent to $D E$. From Problem 1, we deduce that the common chord $B F$ of Γ and Γ_{1} bisects their common tangent $D E$.
3. Let A, B, C be three points on a circle Γ with $A B=B C$. Let the tangents at A and B meet at D. Let $D C$ meet Γ again at E. Prove that the line $A E$ bisects segment $B D$.

Solution.

Let Γ_{1} denote the circumcircle of $A D E$. By Problem 1 it suffices to show that Γ_{1} is tangent to $D B$. Indeed, we have

$$
\angle A D B=180^{\circ}-2 \angle A B D=\angle A B C=\angle A E C
$$

which implies that Γ_{1} is tangent to D.
4. (IMO 2000) Two circles Γ_{1} and Γ_{2} intersect at M and N. Let ℓ be the common tangent to Γ_{1} and Γ_{2} so that M is closer to ℓ than N is. Let ℓ touch Γ_{1} at A and Γ_{2} at B. Let the line through M parallel to ℓ meet the circle Γ_{1} again at C and the circle Γ_{2} again at D. Lines $C A$ and $D B$ meet at E; lines $A N$ and $C D$ meet at P; lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

Solution.

Extend $N M$ to meet $A B$ at X. Then by Problem 1, X is the midpoint of $A B$. Since $P Q$ is parallel to $A B$, it follows that M is the midpoint of $P Q$. Since $\angle M A B=\angle M C E=$ $\angle B A E$ and $\angle M B A=\angle M D E=\angle A B E$, we see that E is the reflection of M across $A B$. So $E M$ the perpendicular bisector of $P Q$, and hence $E P=E Q$.
5. Let $A B C$ be an acute triangle. Let the line through B perpendicular to $A C$ meet the circle with diameter $A C$ at points P and Q, and let the line through C perpendicular to $A B$ meet the circle with diameter $A B$ at points R and S. Prove that P, Q, R, S are concyclic.

Solution.

Let D be the foot of the perpendicular from A to $B C$, and let H be the orthocenter of $A B C$. Since $\angle A D B=90^{\circ}$, the circle with diameter $A B$ passes through D, so $H S \cdot H R=$ $H A \cdot H D$ by power of a point. Similarly the circle with diameter $A C$ passes through D as well, so $H P \cdot H Q=H A \cdot H D$ as well. Hence $H P \cdot H Q=H R \cdot H S$, and therefore by the converse of power of a point, P, Q, R, S are concyclic.
6. Let $A B C$ be an acute triangle with orthocenter H. The points M and N are taken on the sides $A B$ and $A C$, respectively. The circles with diameters $B N$ and $C M$ intersect at points P and Q. Prove that P, Q, and H are collinear.

Solution.

We want to show that H lies on the radical axis of the two circles, so it suffices to show that H has equal powers with respect to the two circles.
Let $B E$ and $C F$ be two altitudes of $A B C$. Since $\angle B E N=90^{\circ}, E$ lies the circle with diameter $B N$. Hence the power of H with respect to the circle with diameter $B N$ is $H B \cdot H E$. Similarly, the power of H with respect to the the circle with diameter $C M$ is $H C \cdot H F$.

Since $\angle B E C=\angle B F C=90^{\circ}, B, C, E, F$ are concyclic, hence $H B \cdot H E=H C \cdot H F$ by power of a point. It follows that H has equal powers with respect to the two circles with diameter $A B$ and $B C$.
7. (Euler's relation) In a triangle with circumcenter O, incenter I, circumradius R, and inradius r, prove that

$$
O I^{2}=R(R-2 r)
$$

Solution.

Let $A I$ extended meet the circumcircle again at D. The power of I with respect to the circumcircle is equal to

$$
-I A \cdot I D=I O^{2}-R^{2} .
$$

Let us compute the lengths of $I A$ and $I D$. By consider the right triangle with one vertex A and the opposite side the radius of the incircle perpendicular to $A B$, we find $I A=r \sin \frac{A}{2}$. We have

$$
\angle B I D=\angle B A D+\angle A B I=\angle D A C+\angle I B C=\angle D B C+\angle I B C=\angle I B D .
$$

Thus $I D=B D=\frac{2 R}{\sin \frac{A}{2}}$, where the last equality follows from the law of sines on triangle $A B D$. Hence

$$
R^{2}-I O^{2}=I A \cdot I D=r \sin \frac{A}{2} \cdot \frac{2 R}{\sin \frac{A}{2}}=2 R r .
$$

The result follows.
8. (USAMO 1998) Let \mathcal{C}_{1} and \mathcal{C}_{2} be concentric circles, with \mathcal{C}_{2} in the interior of \mathcal{C}_{1}. Let A be a point on \mathcal{C}_{1} and B a point on \mathcal{C}_{2} such that $A B$ is tangent to \mathcal{C}_{2}. Let C be the second point of intersection of $A B$ and \mathcal{C}_{1}, and let D be the midpoint of $A B$. A line passing through A intersects \mathcal{C}_{2} at E and F in such a way that the perpendicular bisectors of $D E$ and $C F$ intersect at a point M on $A B$. Find, with proof, the ratio $A M / M C$.

Solution.

Using power of point, we have $A E \cdot A F=A B^{2}=A D \cdot A C$. Therefore, D, C, F, E are concyclic. The intersection M of the perpendicular bisectors of $D E$ and $C F$ must meet at the center of the circumcircle of $D C F E$. Since M is on $D C$, it follows that $D C$ is the diameter of this circle. Hence M is the midpoint of $D C$. So $\frac{M C}{A C}=\frac{1}{2} \frac{D C}{A C}=\frac{1}{2} \cdot \frac{3}{4}=\frac{3}{8}$. Thus $\frac{A M}{M C}=\frac{3}{5}$.
9. Let $A B C$ be a triangle and let D and E be points on the sides $A B$ and $A C$, respectively, such that $D E$ is parallel to $B C$. Let P be any point interior to triangle $A D E$, and let F and G be the intersections of $D E$ with the lines $B P$ and $C P$, respectively. Let Q be the second intersection point of the circumcircles of triangles $P D G$ and $P F E$. Prove that the points A, P, and Q are collinear.

Solution.

Let the circumcircle of $D P G$ meet line $A B$ again at M, and let the circumcircle of $E P F$ meet line $A C$ again at N. Assume the configuration where M and N lie on sides $A B$ and $A C$ respectively (the arguments for the other cases are similar). We have $\angle A B C=$ $\angle A D G=180^{\circ}-\angle B D G=180^{\circ}-\angle M P C$, so $B M P C$ is cyclic. Similarly, $B P N C$ is cyclic as well. So $B C N P M$ is cyclic. Hence $\angle A N M=\angle A B C=\angle A D E$, so M, N, D, E are concyclic. By power of a point, $A D \cdot A M=A E \cdot A D$. Therefore, A has equal power with respect to the circumcircles of $D P G$ and the $E P F$, and thus A lies on line $P Q$, the radical axis.
10. (IMO 1995) Let A, B, C, and D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N$, and $X Y$ are concurrent.

Solution.

By power of a point, we have $P M \cdot P C=P X \cdot P Y=P N \cdot P B$, so B, C, M, N are concyclic. Note that $\angle A M C=\angle B N D=90^{\circ}$ since they are subtended by diameters $A C$ ad $B D$, respectively. Hence $\angle M N D=90^{\circ}+\angle M N B=90^{\circ}+\angle M C A=180^{\circ}-\angle M A D$. Therefore A, D, N, M are concyclic. Since $A M, D N, X Y$ are the three radical axes for the circumcircles of $A M X C, B X N D$, and $A M N D$, they concur at the radical center.

