0.1 Number Theory

NT1 Solve in positive integers the equation $1005^{x}+2011^{y}=1006^{z}$.

Solution

We have $1006^{z}>2011^{y}>2011$, hence $z \geq 2$. Then $1005^{x}+2011^{y} \equiv 0(\bmod 4)$.
But $1005^{x} \equiv 1(\bmod 4)$, so $2011^{y} \equiv-1(\bmod 4) \Rightarrow y$ is odd, i.e. $2011^{y} \equiv-1(\bmod 1006)$.
Since $1005^{x}+2011^{y} \equiv 0(\bmod 1006)$, we get $1005^{x} \equiv 1(\bmod 1006) \Rightarrow x$ is even.
Now $1005^{x} \equiv 1(\bmod 8)$ and $2011^{y} \equiv 3(\bmod 8)$, hence $1006^{z} \equiv 4(\bmod 8) \Rightarrow z=2$.
It follows that $y<2 \Rightarrow y=1$ and $x=2$. The solution is $(x, y, z)=(2,1,2)$.

NT2 Find all prime numbers p such that there exist positive integers x, y that satisfy the relation $x\left(y^{2}-p\right)+y\left(x^{2}-p\right)=5 p$.

Solution

The given equation is equivalent to $(x+y)(x y-p)=5 p$. Obviously $x+y \geq 2$.
We will consider the following three cases:
Case 1: $x+y=5$ and $x y=2 p$. The equation $x^{2}-5 x+2 p=0$ has at least a solution, so we must have $0 \leq \Delta=25-8 p$ which implies $p \in\{2,3\}$. For $p=2$ we obtain the solutions $(1,4)$ and $(4,1)$ and for $p=3$ we obtain the solutions $(2,3)$ and $(3,2)$.
Case 2: $x+y=p$ and $x y=p+5$. We have $x y-x-y=5$ or $(x-1)(y-1)=6$ which implies $(x, y) \in\{(2,7) ;(3,4) ;(4,3) ;(7,2)\}$. Since p is prime, we get $p=7$.
Case 3: $x+y=5 p$ and $x y=p+1$. We have $(x-1)(y-1)=x y-x-y+1=2-4 p<0$. But this is impossible since $x, y \geq 1$.
Finally, the equation has solutions in positive integers only for $p \in\{2,3,7\}$.

NT3 Find all positive integers n such that the equation $y^{2}+x y+3 x=n\left(x^{2}+x y+3 y\right)$ has at least a solution (x, y) in positive integers.

Solution

Clearly for $n=1$, each pair (x, y) with $x=y$ is a solution. Now, suppose that $n>1$ which implies $x \neq y$. We have $0<n-1=\frac{y^{2}+x y+3 x}{x^{2}+x y+3 y}-1=\frac{(x+y-3)(y-x)}{x^{2}+x y+3 y}$.
Since $x+y \geq 3$, we conclude that $x+y>3$ and $y>x$. Take $d=\operatorname{gcd}(x+y-$ $\left.3 ; x^{2}+x y+3 y\right)$. Then d divides $x^{2}+x y+3 y-x(x+y-3)=3(x+y)$. Then d also divides $3(x+y)-3(x+y-3)=9$, hence $d \in\{1,3,9\}$. As $n-1=\frac{\frac{x+y-3}{d}(y-x)}{\frac{x^{2}+x y+3 y}{d}}$ and $\operatorname{gcd}\left(\frac{x+y-3}{d} ; \frac{x^{2}+x y+3 y}{d}\right)=1$, it follows that $\frac{x^{2}+x y+3 y}{d}$ divides $y-x$, which leads to $x^{2}+x y+3 y \leq d y-d x \Leftrightarrow x^{2}+d x \leq(d-3-x) y$. It is necessary that
$d-3-x>0 \Rightarrow d>3$, therefore $d=9$ and $x<6$. Take $x+y-3=9 k, k \in \mathbb{N}^{*}$ since $d \mid x+y-3$ and we get $y=9 k+3-x$. Hence $n-1=\frac{k(9 k+3-2 x)}{k(x+3)+1}$. Because k and $k(x+3)+1$ are relatively prime, the number $t=\frac{9 k+3-2 x}{k(x+3)+1}$ must be integer for some positive integers $x<6$. It remains to consider these values of x :

1) For $x=1$, then $t=\frac{9 k+1}{4 k+1}$ and since $1<t<3$, we get $t=2, k=1, y=11$, so $n=3$.
2) For $x=2$, then $t=\frac{9 k-1}{5 k+1}$ and since $1<t<2$, there are no solutions in this case.
3) For $x=3$, then $t=\frac{9 k-3}{6 k+1}$ and since $1 \neq t<2$, there are no solutions in this case.
4) For $x=4$, then $t=\frac{9 k-5}{7 k+1}<2$,i.e. $t=1$ which leads to $k=3, y=26$, so $n=4$.
5) For $x=5$, then $t=\frac{9 k-7}{8 k+1}<2$,i.e. $t=1$ which leads to $k=8, y=70$, so $n=9$.

Finally, the answer is $n \in\{1,3,4,9\}$.
NT4 Find all prime positive integers p, q such that $2 p^{3}-q^{2}=2(p+q)^{2}$.

Solution 1

The given equation can be rewritten as $2 p^{2}(p-1)=q(3 q+4 p)$.
Hence $p\left|3 q^{2}+4 p q \Rightarrow p\right| 3 q^{2} \Rightarrow p \mid 3 q$ (since p is a prime number) $\Rightarrow p \mid 3$ or $p \mid q$.
If $p \mid q$, then $p=q$. The equation becomes $2 p^{3}-9 p^{2}=0$ which has no prime solution.
If $p \mid 3$, then $p=3$. The equation becomes $q^{2}+4 q-12=0 \Leftrightarrow(q-2)(q+6)=0$.
Since $q>0$, we get $q=2$, so we have the solution $(p, q)=(3,2)$.

Solution 2

Since $2 p^{3}$ and $2\left(p+q^{2}\right)$ are even, q^{2} is also even, thus $q=2$ because it is a prime number.
The equation becomes $p^{3}-p^{2}-4 p-6=0 \Leftrightarrow\left(p^{2}-4\right)(p-1)=10$.
If $p \geq 4$, then $\left(p^{2}-4\right)(p-1) \geq 12 \cdot 3>10$, so $p \leq 3$. A direct verification gives $p=3$.
Finally, the unique solution is $(p, q)=(3,2)$.
NT5 Find the least positive integer such that the sum of its digits is 2011 and the product of its digits is a power of 6 .

Solution

Denote this number by N. Then N can not contain the digits $0,5,7$ and its digits must be written in increasing order. Suppose that N has x_{1} ones, x_{2} twos, x_{3} threes, x_{4} fours, x_{6} sixes, x_{8} eights and x_{9} nines, then $x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+6 x_{6}+8 x_{8}+9 x_{9}=2011$. (1) The product of digits of the number N is a power of 6 when we have the relation $x_{2}+2 x_{4}+x_{6}+3 x_{8}=x_{3}+x_{6}+2 x_{9}$, hence $x_{2}-x_{3}+2 x_{4}+3 x_{8}-2 x_{9}=0$. (2)

Denote by S the number of digits of $N\left(S=x_{1}+x_{2}+\ldots+x_{9}\right)$. In order to make the coefficients of x_{8} and x_{9} equal, we multiply relation (1) by 5 , then we add relation (2). We get $43 x_{9}+43 x_{8}+30 x_{6}+22 x_{4}+14 x_{3}+11 x_{2}+5 x_{1}=10055 \Leftrightarrow 43 S=10055+13 x_{6}+$ $21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1}$. Then $10055+13 x_{6}+21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1}$ is a multiple of 43 not less than 10055. The least such number is 10062 , but the relation $10062=$ $10055+13 x_{6}+21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1}$ means that among $x_{1}, x_{2}, \ldots, x_{6}$ there is at least one positive, so $10062=10055+13 x_{6}+21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1} \geq 10055+13=10068$ which is obviously false. The next multiple of 43 is 10105 and from relation $10105=$ $10055+13 x_{6}+21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1}$ we get $50=13 x_{6}+21 x_{4}+29 x_{3}+32 x_{2}+38 x_{1}$. By writing as $13 x_{6}+21\left(x_{4}-1\right)+29\left(x_{3}-1\right)+32 x_{2}+38 x_{1}=0$, we can easily see that the only possibility is $x_{1}=x_{2}=x_{6}=0$ and $x_{3}=x_{4}=1$. Then $S=235, x_{8}=93, x_{9}=140$. Since S is strictly minimal, we conclude that $N=34 \underbrace{88 \ldots 8}_{93} \underbrace{99 \ldots 9}_{140}$.

