0.1 Number Theory

NT1 Solve in positive integers the equation $1005^x + 2011^y = 1006^z$.

Solution

We have $1006^z > 2011^y > 2011$, hence $z \ge 2$. Then $1005^x + 2011^y \equiv 0 \pmod{4}$. But $1005^x \equiv 1 \pmod{4}$, so $2011^y \equiv -1 \pmod{4} \Rightarrow y$ is odd, i.e. $2011^y \equiv -1 \pmod{1006}$. Since $1005^x + 2011^y \equiv 0 \pmod{1006}$, we get $1005^x \equiv 1 \pmod{1006} \Rightarrow x$ is even. Now $1005^x \equiv 1 \pmod{8}$ and $2011^y \equiv 3 \pmod{8}$, hence $1006^z \equiv 4 \pmod{8} \Rightarrow z = 2$. It follows that $y < 2 \Rightarrow y = 1$ and x = 2. The solution is (x, y, z) = (2, 1, 2).

NT2 Find all prime numbers p such that there exist positive integers x, y that satisfy the relation $x(y^2 - p) + y(x^2 - p) = 5p$.

Solution

The given equation is equivalent to (x + y)(xy - p) = 5p. Obviously $x + y \ge 2$. We will consider the following three cases:

Case 1: x + y = 5 and xy = 2p. The equation $x^2 - 5x + 2p = 0$ has at least a solution, so we must have $0 \le \Delta = 25 - 8p$ which implies $p \in \{2, 3\}$. For p = 2 we obtain the solutions (1, 4) and (4, 1) and for p = 3 we obtain the solutions (2, 3) and (3, 2).

Case 2: x + y = p and xy = p + 5. We have xy - x - y = 5 or (x - 1)(y - 1) = 6 which implies $(x, y) \in \{(2, 7); (3, 4); (4, 3); (7, 2)\}$. Since p is prime, we get p = 7.

Case 3: x + y = 5p and xy = p + 1. We have (x - 1)(y - 1) = xy - x - y + 1 = 2 - 4p < 0. But this is impossible since $x, y \ge 1$.

Finally, the equation has solutions in positive integers only for $p \in \{2, 3, 7\}$.

NT3 Find all positive integers *n* such that the equation $y^2 + xy + 3x = n(x^2 + xy + 3y)$ has at least a solution (x, y) in positive integers.

Solution

Clearly for n = 1, each pair (x, y) with x = y is a solution. Now, suppose that n > 1 which implies $x \neq y$. We have $0 < n - 1 = \frac{y^2 + xy + 3x}{x^2 + xy + 3y} - 1 = \frac{(x + y - 3)(y - x)}{x^2 + xy + 3y}$. Since $x + y \ge 3$, we conclude that x + y > 3 and y > x. Take d = gcd(x + y - 3); $x^2 + xy + 3y$. Then d divides $x^2 + xy + 3y - x(x + y - 3) = 3(x + y)$. Then d also divides 3(x + y) - 3(x + y - 3) = 9, hence $d \in \{1, 3, 9\}$. As $n - 1 = \frac{\frac{x + y - 3}{d}(y - x)}{\frac{x^2 + xy + 3y}{d}}$ and $gcd\left(\frac{x + y - 3}{d}; \frac{x^2 + xy + 3y}{d}\right) = 1$, it follows that $\frac{x^2 + xy + 3y}{d}$ divides y - x, which leads to $x^2 + xy + 3y \le dy - dx \Leftrightarrow x^2 + dx \le (d - 3 - x)y$. It is necessary that $d-3-x > 0 \Rightarrow d > 3$, therefore d = 9 and x < 6. Take x + y - 3 = 9k, $k \in \mathbb{N}^*$ since $d \mid x + y - 3$ and we get y = 9k + 3 - x. Hence $n - 1 = \frac{k(9k + 3 - 2x)}{k(x + 3) + 1}$. Because k and k(x + 3) + 1 are relatively prime, the number $t = \frac{9k + 3 - 2x}{k(x + 3) + 1}$ must be integer for some positive integers x < 6. It remains to consider these values of x: 1) For x = 1, then $t = \frac{9k + 1}{4k + 1}$ and since 1 < t < 3, we get t = 2, k = 1, y = 11, so n = 3. 2) For x = 2, then $t = \frac{9k - 1}{5k + 1}$ and since 1 < t < 2, there are no solutions in this case. 3) For x = 3, then $t = \frac{9k - 3}{6k + 1}$ and since $1 \neq t < 2$, there are no solutions in this case. 4) For x = 4, then $t = \frac{9k - 5}{7k + 1} < 2$, i.e. t = 1 which leads to k = 3, y = 26, so n = 4. 5) For x = 5, then $t = \frac{9k - 7}{8k + 1} < 2$, i.e. t = 1 which leads to k = 8, y = 70, so n = 9. Finally, the answer is $n \in \{1, 3, 4, 9\}$.

NT4 Find all prime positive integers p, q such that $2p^3 - q^2 = 2(p+q)^2$. Solution 1

The given equation can be rewritten as $2p^2(p-1) = q(3q+4p)$. Hence $p \mid 3q^2 + 4pq \Rightarrow p \mid 3q^2 \Rightarrow p \mid 3q$ (since p is a prime number) $\Rightarrow p \mid 3$ or $p \mid q$. If $p \mid q$, then p = q. The equation becomes $2p^3 - 9p^2 = 0$ which has no prime solution. If $p \mid 3$, then p = 3. The equation becomes $q^2 + 4q - 12 = 0 \Leftrightarrow (q-2)(q+6) = 0$. Since q > 0, we get q = 2, so we have the solution (p,q) = (3,2).

Solution 2

Since $2p^3$ and $2(p+q^2)$ are even, q^2 is also even, thus q = 2 because it is a prime number. The equation becomes $p^3 - p^2 - 4p - 6 = 0 \Leftrightarrow (p^2 - 4)(p - 1) = 10$.

If $p \ge 4$, then $(p^2 - 4)(p - 1) \ge 12 \cdot 3 > 10$, so $p \le 3$. A direct verification gives p = 3. Finally, the unique solution is (p, q) = (3, 2).

NT5 Find the least positive integer such that the sum of its digits is 2011 and the product of its digits is a power of 6.

Solution

Denote this number by *N*. Then *N* can not contain the digits 0, 5, 7 and its digits must be written in increasing order. Suppose that *N* has x_1 ones, x_2 twos, x_3 threes, x_4 fours, x_6 sixes, x_8 eights and x_9 nines, then $x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_6 + 8x_8 + 9x_9 = 2011$. (1) The product of digits of the number *N* is a power of 6 when we have the relation $x_2 + 2x_4 + x_6 + 3x_8 = x_3 + x_6 + 2x_9$, hence $x_2 - x_3 + 2x_4 + 3x_8 - 2x_9 = 0$. (2)

Denote by S the number of digits of N ($S = x_1 + x_2 + ... + x_9$). In order to make the coefficients of x_8 and x_9 equal, we multiply relation (1) by 5, then we add relation (2). $21x_4 + 29x_3 + 32x_2 + 38x_1$. Then $10055 + 13x_6 + 21x_4 + 29x_3 + 32x_2 + 38x_1$ is a multiple of 43 not less than 10055. The least such number is 10062, but the relation 10062 = $10055 + 13x_6 + 21x_4 + 29x_3 + 32x_2 + 38x_1$ means that among $x_1, x_2, ..., x_6$ there is at least one positive, so $10062 = 10055 + 13x_6 + 21x_4 + 29x_3 + 32x_2 + 38x_1 \ge 10055 + 13 = 10068$ which is obviously false. The next multiple of 43 is 10105 and from relation 10105 = $10055 + 13x_6 + 21x_4 + 29x_3 + 32x_2 + 38x_1$ we get $50 = 13x_6 + 21x_4 + 29x_3 + 32x_2 + 38x_1$. By writing as $13x_6 + 21(x_4 - 1) + 29(x_3 - 1) + 32x_2 + 38x_1 = 0$, we can easily see that the only possibility is $x_1 = x_2 = x_6 = 0$ and $x_3 = x_4 = 1$. Then S = 235, $x_8 = 93$, $x_9 = 140$. Since *S* is strictly minimal, we conclude that $N = 34 \underbrace{88...8}_{93} \underbrace{99...9}_{140}$.