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Problems




Algebra

L. .
e A1l. Find all ordered triples (z,v,2) of real numbers satisfying the following system of

equations:
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(w 2). Find the largest possible value of the expression |v/z2 + 4z + 8—+/z2 + 8z + 17| where
x is a real number.

5eP A3. Show that

2 2
i —]>1
(a+2b+ a+1> (b+2a+b+1) > 16

for all positive real numbers a, b satisfying ab > 1.
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Combinatorics

(\M“.‘" MED
C1. Find the largest number of distinct integers that can be chosen from the set
{1,2,...,2013} so that the difference of no two of them is equal to 17. /

gxv

(-»$* C2. On a billiards table in the shape of a rectangle ABCD with AB = 2013 and AD =
1000, a billiard ball is shot along the bisector of the angle ZBAD. Assuming that the ball
is reflected from the sides at the same angle it comes in, determine whether it will ever go
to the corner B. J
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i C3. All possible pairs of n apples are weighed and the results are given to us in an arbitrary
order. Can we determine the weights of the applesif a. n=4,b. n =05, c. n =67




Geometry
p8

G1. Let AB be a diameter of a circle w with center O and OC be a radius of w which
is perpendicular to AB. Let M be a point on the line segment OC. Let N be the second
point of intersection of the line AM with w, and let P be the point of intersection of the
lines tangent to w at N and at B. Show that the points M, O, P, N are concyclic.

MV)@ w; and wy are two circles that are externally tangent to each other at the point M

internally tangent to a circle w3 at the points K and L, respectively. Let A and B be
the two points where the common tangent line at M to w; and w, intersects ws. Show that
if ZKAB = ZLAB then the line segment AB is a diameter of wj.

MD G3.Let Dbea point on the side BC of an acute triangle ABC such that ZBAD = ZCAO
where O is the center of the circumcircle w of the triangle ABC. Let E be the second point
of intersection of w and the line AD. Let M, N, P be the midpoints of the line segments
BE,0OD, AC, respectively. Show that M, N, P are collinear.

$i%  (G4. Let I be the incenter and AB the shortest side of a triangle ABC. The circle with
center I and passing through C intersects the ray AB at the point P and the ray BA at the
point (). Let D be the point where the excircle of the triangle ABC belonging to angle A
touches the side BC, and let E be the symmetric of the point C' with respect to D. Show
that the lines PE and C'Q) are perpendicular.

&% (35. A circle passing through the midpoint M of the side BC and the vertex A of a
triangle ABC intersects the sides AB and AC for the second time at the points P and @,
respectively. Show that if ZBAC = 60° then

AP+AQ+PQ<AB+AC+%BC‘.

ﬁ Let P and @ be the midpoints of the sides BC' and CD, respectively, of a rectangle
ABCD. Let K and M be the points of intersection of the line PD with @B and QA,
respectively, and let N be the point of intersection of the lines PA and QB.

Let X, Y, Z be the midpoints of the line segments AN, KN, AM, respectively. Let ¢,
be the line passing through X and perpendicular to M K, ¢, be the line passing through
Y and perpendicular to AM, 3 be the line passing through Z and perpendicular to K'N.
Show that #,, €3, {3 are concurrent.




Number Theory

N1. Find all positive integers n for which 13 + 23 + - 4+ 16® + 17" is a perfect square.
I g P

khz v
N2. Find all ordered triples (z,y, z) of integers satisfying 20" + 13¥ = 2013%.

N ) e ) a’b—1
IN3. Find all ordered pairs (a,b) of positive integers for which the numbers — and
b*a +1 o
b1 are positive Integers.
Rov

N4. A rectangle in the zy-plane is called latticed if all its vertices have integer coordinates.
a. Find a latticed rectangle with area 2013 whose sides are not parallel to the axes.

b. Show that if a latticed rectangle has area 2011, then its sides are parallel to the axes.
HEL
N5. Find all ordered triples (z,y, z) of positive integers satisfying the equation
1 Y I 1
2 zz 22 2013°
w1
IN6. Find all ordered triples (z, y, z) of integers satisfying the following system of equations:
2 _ 2
Tt~y =2z

3zy + (z — y)z = 22
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A1. Find all ordered triples (z,y, z) of real numbers satisfying the following system of
equations:

1;3:5_23_/

y z

3 X z
== = 9= ,
Y v p ;

2:3:—11—2E

z Y

Solution. We have
riyz = 2% — 24
yzx = 2% — 222

2Ty = y2 ~ 2¢?

with zyz # 0.

Adding these up we obtain (22 +y? + 2?)(zyz + 1) = 0. Hence zyz = —1. Now the system
of equations becomes:

22 = 2% — 2?
2 = 222 — o2

22 =2z — o2

Then the first two equations give 2 = y% = 22. As zyz = —1, we conclude that (z,y,2) =
(1,1,-1), (1,-1,1), (-1,1,1) and (—1,—1,—1) are the only solutions.



A2. Find the largest possible value of the expression |v/z2 + 4z + 8—v/z? + 8 + 17| where
x is a real number.

Solution. We observe that
V2 + 42 +8 - Va2 + 82 + 17| = |\/(z — (=2))2 + (0— 2) — /(= — (—4))2 + (0 — 1)?)]
is the absolute difference of the distances from the point P(z,0) in the zy-plane to the
points A(—-2,2) and B(—4,1).
By the Triangle Inequality, |PA — PB| < |AB| and the equality occurs exactly when P lies
on the line passing through A and B, but not between them.
If P, A, B are collinear, then (z — (-2))/(0 — 2) = ((—-4) — (=2))/(1 — 2). This gives
z=—6,and as -6 < —4 < -2,

[v/(—6)% + 4(—6) + 8 — /(—6)2 + 8(=6) + 17| = |v/20 — V5| = V/5

is the largest possible value of the expression.




A3. Show that
2 2
o — ] >16
(a+26+a+1) (b+2a+b+1) 2

for all positive real numbers a, b satisfying ab > 1.

Solution 1. By the AM-GM Inequality we have:

a+1 2
> 92
2 +a+1“
Therefore
a+2b+ >33 Lo
a+1 2
and, similarly,
2 b+ 3
2 —>2 —_
b+ a+b+1_ a+ 5

On the other hand,
(a +4b+ 3)(b+ 4a + 3) > (Vab + 4Vab + 3)* > 64

by the Cauchy-Schwarz Inequality as ab > 1, and we are done.

Solution 2. Since ab > 1, we have a+b > a+ 1/a > 24/a - (1/a) = 2.

Then
2 2
a+2b+——=b+(a+b)+
a+1 a+1
2
>b+2+
a+1
_b+1+b+1+1+ 2
o2 2 a+1
2
it (b+1)
~V2a+1)
by the AM-GM Inequality. Similarly,
2 (a+1)?
b+ 2a+ —— > 44 :
R R | TFa

Now using these and applying the AM-GM Inequality another time we obtain:

(a+2b+ai) (b+2a+i) > 16{/@.2@

+1 b+1 4

> 164/ (2\/521(2\/5)

= 16v/ab

> 16




Solution 3. We have

2 2
2b+ ——
(a+ +a+l) (b+2a+b+

)

((a+b)+b+a—§———l) ((a+b)+a+g%)

2
2
> (a+b+x/ﬂ>+ (a+1)(b+1))

by the Cauchy-Schwarz Inequality.
On the other hand,

2 4
=
Vie+1)(b+1) " a+b+2
by the AM-GM Inequality and
2 4 (a+b+1)(a+b-2)
Vab >a+b+1 = +4>4
a+b+vVab+ (a+1)(b+1)_a+ + +a+b+2 PN

asa+b>2vab> 2, finishing the proof.

- . . . . . . ""."’"u‘ ’"_"' . u “
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?{ Find the largest number of distinct integers that can be chosen from the set
1,2,...,2013} so that the difference of no two of them is equal to 17.

Solution. Consider the sets A,,, = {34m +n — 34,3dm + n — 17} for 1 < m < 59 and
1 <n <17, and By = {2006 + k} for 1 < k < 7. As we cannot choose more than one
number from each of these sets, we can choose at most 59-17 + 7 = 1010 numbers. On the
other hand, choosing the smaller element of each of these sets gives exactly 1010 numbers
satisfying the condition.

Comment. The original problem proposal asks the question with the numbers 55 and 5.

11
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'%4 On a billiards table in the shape of a rectangle ABC'D with AB = 2013 and AD =
1000, a billiard ball is shot along the bisector of the angle ZBAD. Assuming that the ball
is reflected from the sides at the same angle it comes in, determine whether it will ever go
to the corner B.

Solution 1. The ball travels a horizontal distance of 1000 units between two bounces from
the sides AB and C'D as it always moves on a line making a 45° angle with the sides. Hence
it is always at a distance of even number of units to the line AD when it hits AB or C'D.
Hence it can never hit AB at B.

Solution 2. Consider a rectangle A’B'C'D" which is wider 1/2 units on all sides, divide
it into unit squares, and color them black and white alternatingly with the vertex A being
the center of a black unit square. Then the ball always moves along the diagonals of the
black unit squares. As B lies at the center of a white unit square, the ball never reaches B.

Solution 3. The vertical lines z = 2013m and the horizontal lines ¥ = 1000n, where m
and n are integers, divide the zy-plane into rectangles congruent to the rectangle ABCD.
Let A(0,0), B(2013,0), C(2013,1000), D(0,1000), and identify the other rectangles with
ABCD via reflections across these lines. Under this identification, the ball moves along the
line y = = and the coordinates of the points identified with B have the form (2013k, 10007)
where k is an odd integer and [ is an even one. Hence the ball never goes to B.

12



A W W T TR S I O O S A A A B S B R I

C3. All possible pairs of n apples are weighed and the results are given to us in an arbitrary
order. Can we determine the weights of the apples if a. n =4, b. n= 15, ¢c. n= 67

Solution. a. No. Four apples with weights 1,5,7,9 and with weights 2, 4,6, 10 both give
the results 6, 8,10, 12, 14,16 when weighed in pairs.

b. Yes. Let a < b < ¢ < d < e be the weights of the apples. As each apple is weighed 4
times, by adding all 10 pairwise weights and dividing the sum by 4, we obtain a+b-+c+d+e.
Subtracting the smallest and the largest pairwise weights a+b and d+ e from this we obtain
c. Subtracting c from the second largest pairwise weight ¢ + e we obtain e. Subtracting e
from the largest pairwise weight d + e we obtain d. a and b are similarly determined.

c. Yes. Let a < b < ¢ <d<e< fbethe weights of the apples. As each apple is
weighed 5 times, by adding all 15 pairwise weights and dividing the sum by 5, we obtain
a+b+c+d+ e+ f. Subtracting the smallest and the largest pairwise weights a + b and
e + f from this we obtain ¢ + d.

Subtracting the smallest and the second largest pairwise weights a + b and d + f from
a+b+c+d+ e+ f we obtain ¢ + e. Similarly we obtain b+ d. We use these to obtain
a+ f and b+e.

Now a +d, a+ e, b+ c are the three smallest among the remaining six pairwise weights. If
we add these up, subtract the known weights ¢ + d and b + e form the sum and divide the
difference by 2, we obtain a. Then the rest follows.

13




G1. Let AB be a diameter of a circle w with center O and OC be a radius of w which
is perpendicular to AB. Let M be a point on the line segment OC. Let N be the second
point of intersection of the line AM with w, and let P be the point of intersection of the
lines tangent to w at N and at B. Show that the points M, O, P, N are concyclic.

Solution. Since the lines PN and BP are tangent tow, NP = PB and OP is the bisector of
ZNOB. Therefore the lines OP and N B are perpendicular. Since ZANB = 90°, it follows
that the lines AN and OP are parallel. As MO and PB are also parallel and AO = OB,
the triangles AMO and OPB are congruent and MO = PB. Hence MO = N P. Therefore

MOPN is an isosceles trapezoid and therefore cyclic. Hence the points M, O, P, N are
concyclic.

14



WEW» M w; and wy are two circles that are externally tangent to each other at the point M

and internally tangent to a circle w; at the points K and L, respectively. Let A and B be
the two points where the common tangent line at M to w; and w, intersects wz. Show that
if /KAB = ZLAB then the line segment AB is a diameter of w;.

Solution. Let C be the intersection point of the tangent lines to the circles w, at K and
wo at L. Point C lies on the radical axis of circles w; and ws, and also on the radical axis
of the circles w, and ws. Therefore C lies on the radical axis of the circles w; and wsy too.
Therefore the points A, B, C are collinear.

Since ZKAB = ZLAB, the chords KB and BL have the same length. As we also have
CK = CL, the triangles KBC and LBC are congruent. In particular, /ZKBA = ZLBA.
Therefore, /BKA = 180°—(/ABK+/BAK) = 180°—(/LBK+/LAK)/2 = 180°—90° =
90°, and AB is a diameter.

Comment. The original problem proposal gives ZKAB = /LAB = 15° and asks the
measures of the angles of the quadrilateral AKBL.

1K



G3. Let D be a point on the side BC of an acute triangle ABC such that ZBAD = ZC' AO
where O is the center of the circumcircle w of the triangle ABC. Let E be the second point

of intersection of w and the line AD. Let M, N, P be the midpoints of the line segments
BE, 0D, AC, respectively. Show that M, N, P are collinear.

Solution. We will show that MOPD is a parallelogram. From this it follows that M, N,
P are collinear.

Since ZBAD = LZCAO = 90° — ZABC, D is the foot of the perpendicular from A to side
BC'. Since M is the midpoint of the line segment BE, we have BM = ME = MD and
hence /MDE = /MED = /ACB.

Let the line M D intersect the line AC at D,. Since ZADD, = /MDFE = ZACD, MD
is perpendicular to AC. On the other hand, since O is the center of the circumcircle of
triangle ABC and P is the midpoint of the side AC, OP is perpendicular to AC. Therefore
MD and OP are parallel.

Similarly, since P is the midpoint of the side AC, we have AP = PC = DP and hence
ZPDC = ZACB. Let the line PD intersect the line BE at D,. Since /ZBDD, = ZPDC =
LACB = ZBED, we conclude that PD is perpendicular to BE. Since M is the midpoint
of the line segment BE, OM is perpendicular to BE and hence OM and PD are parallel.

16




G4. Let J be the incenter and AB the shortest side of a triangle ABC. The circle with
center I and passing through € intersects the ray AB at the point I’ and the ray BA at the
point Q. Let D be the point where the excircle of the triangle ABC belonging to angle A
touches the side BC, and let F be the symmetric of the point €' with respect to 1. Show
that the lines PE and CQ are ])(?l‘pt‘ll(lil.:lllil‘l'.

Solution. First we will show that points I and () are not on the line segment AB.

ASS““_“’ that @ is on the line segment AB. Since ('] = QI and ZI1BQ = ZIBC, either
the triangles CBI and QBT are congruent or Z1C'B 4 Z1QB = 180°. In the first case, we
have BC = BQ which contradicts AB being the shortest side.

In the second case, we have ZIQA = ZICB = ZICA and the triangles /AC and [A() are
congruent. Hence this time we have A( = AQ, contradicting AB being the shortest side.

C

Case 1

Case 2

17




Now we will show that the lines PE and CQ are perpendicular.

Since ZIQB < /IAB = (/CAB)/2 < 90° and ZICB = (LACB)/2 < 90°, thzjrl;ac’}f}‘;s
CBI and QBI are congruent. Hence BC' — BQ and ZCQP = £CQB = 90°— ( '
Similarly, we have AC' = AP and hence BP = AC — AB.

On the other hand, as DE = CD and CD + AC = u, where u denotes the semg);riim;g
of the triangle ABC, we have BE = BC —-2(u— AC) = AC — AB. Thexeiore B
and ZQPE = (£ZABQ)/2.

Hence, ZCQP + Z/QPE = 90°.

18
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G5. A circle passing through the midpoint M of the side BC' and the vertex A of a
triangle ABC intersects the sides AB and AC for the second time at the points ” and @,
respectively. Show that if ZBAC = 60° then

AP+AQ+PQ<AB+AC+%BC.

Solution. Since the quadrilateral APMQ is cyclic, we have ZPMQ = 180° — ZPAQ =
180° — ZBAC = 120°. Therefore ZPMB + ZQMC = 180° — ZPMQ = 60°.

Let the point B’ be the symmetric of the point B with respect to the line PM and the
point C’ be the symmetric of the point C' with respect to the line QM. The triangles
B'MP and BM P are congruent and the triangles "M@ and CM(Q are congruent. Hence
LB'MC' = £ZPMQ - £LB'MP - LC'MQ = 120° — ZBMP — ZCMQ = 120° — 60° = 60°.
As we also have BM = BM = CM = C'M, we conclude that the triangle B'MC" is
equilateral and B'C' = BC/2.

On the other hand, we have PB’+ B'C' +C'Q > PQ by the Triangle Inequality, and hence
PB + BC/2+ QC > PQ. This gives the inequality AB + BC/2+ AC > AP + PQ + AQ.

We get an equality only when the points B’ and C' lie on the line segment PQ. If this is the
case, then ZPQC+ZQPB = 2(£LPQM+ZQPM) = 120° and therefore ZAPQ+ ZAQP =
240° # 120°, a contradiction.

19
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AB‘E'D'. Let K and M be the points of intersection of the line PD with QB and QA,
respectively, and let N be the point of intersection of the lines PA and @B.

Let X, Y, Z be the midpoints of the line segments AN, KN, AM, respectively. Let 6
be the line passing through X and perpendicular to MK, £, be the line passing through
Y and perpendicular to AM, £; be the line passing through Z and perpendicular to KN.
Show that ¢y, £, ¢; are concurrent.

Splution. Let 1t be the midpoint of the side AD. Then the lines BR and PD are parallel.
Since ZMAN = /QAP = ZQBR = ZQKM, the points A, N, K, M are concyclic.

D, N 9 7€

[continued on the nezt page]
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Let ¢4, be the line passing through the midpoint W of the line segment MK and
perpendicular to the line AN. Let F; be the point of intersection of ¢; and ¢4, and E;
be the point of intersection of £, and £3. We will show that the points E; and F; coincide.

Let O be the circumcenter of the cyclic quadrilateral ANKM. OW is perpendicular to the
side MK and OX is perpendicular to the side AN. Hence OW is parallel to ¢;, OX is
parallel to £;, and XOW E, is a parallelogram. Therefore the midpoints of the line segments
OFE; and WX coincide. Similarly, the midpoints of the line segments OF, and Y Z coincide.

On the other hand, as X,Y, Z, W are midpoints of the sides of the quadrilateral AN KM,
XYW Z is a parallelogram and therefore the midpoints of the line segments WX and Y Z
coincide. Hence the midpoints of the line segments OF; and OFE, coincide. In other words,
FE, and E; are the same point, and the lines ¢,, ¢5, #3 are concurrent.

Comment. The problem can be asked in the following form:

Let ANKM be a cyclic quadrilateral and let X, Y, Z be the midpoints of the sides AN,
KN, AM, respectively. Let £; be the line passing through X and perpendicular to MK,
¢, be the line passing through Y and perpendicular to AM, {3 be the line passing through
Z and perpendicular to K N. Show that ¢, €5, {3 are concurrent.

21
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Nl'm‘.mw-hrﬁl‘ofo + 16" + IT 1 & perfect square

m‘:'“"“’"’?‘» S =142+ 4167 =W 1T Hemee d1° 420
+ 1 ¢ AT = '’ for o postive wioger = then 17 | m I m = 178 for sme postive
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L8
e . Find all ordered triples (z,y, 2) of integers satisfying 20 + 13V = 20132,

Solution. As 20-13 = 22.5-13 and 2013 = 3- 11 - 61 are relatively prime, z, y and z must
be nonnegative.

Considering the equation modulo 3, we observe that z must be odd. Now considering the
equation modulo 7, we obtain (—1) + (—1)¥ = 4* (mod 7), which is impossible as the right
hand side can only be 1, 2 and 4 modulo 7.

There are no solutions.

23
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ab -1

and
a—+1

INN3. Find all ordered pairs (a,b) of positive integers for which the numbers
bda+1
b—-1

are positive integers.

Solution. As a®» —1=b(a®+1) - (b+1)and a+1|a®+1, we havea + 1 | b+ 1.
Asba+1=aP®*—-1)+(a+1)andb—1|b® -1, wehave b—1|a+ 1.
Sob—1|b+1 and hence b—1 | 2.

o Ifb=2,thena+1|b+1 =3 gives a = 2. Hence (a,b) = (2,2) is the only solution
in this case.

e Ifb=3,thena+1|b+1=4givesa=1ora=3. Hence (a,b) = (1,3) and (3,3)
are the only solutions in this case.

To summarize, (a,b) = (1,3), (2,2) and (3, 3) are the only solutions.

24



IN4. A rectangle in the zy-plane is called latticed if all its vertices have integer coordinates.
a. Find a latticed rectangle with area 2013 whose sides are not parallel to the axes.

b. Show that if a latticed rectangle has area 2011, then its sides are parallel to the axes.

Solution. a. The rectangle PQRS with P(0,0), Q(165,198), R(159,203), S(—6,5) has
area 2013.

b. Suppose that the latticed rectangle PQRS has area 2011 and its sides are not parallel
to the axes. Without loss of generality we may assume that its vertices are P(0,0), Q(a,b),
S(c,d), R(a+ c,b+ d) where a, b, c, d are integers and abcd # 0.

Then (a®+b%)(c* +d?) = 2011%. As 2011 is a prime, 2011 | a®+b% or 2011 | ¢2+d2. Assume
that the first one is the case. Since 2011 = 3 (mod 4), this can happen only if a = 2011a,
and b = 2011, for some integers ag and by. Now we have (a2 + b2)(c? + d?) = 1. This
means ¢ +d? = 1 and hence c =0 or d = 0, contradicting cd # 0.

Comment. The original problem proposal has the numbers 13 and 11 instead.




N5. Find all ordered triples (z,v, z) of positive integers satisfying the equation
i | y 1 1

22 zz 22 2013
Solution. We have z?2? = 2013(z? + zyz + 22). Let d = ged(z,2) and = = da, z = db.
Then a?b%d? = 2013(a® + aby + b?).

As ged(a,b) = 1, we also have ged(a?,a? + aby + b%) = 1 and ged(b?, a? + aby + b%) = 1.
Therefore a? | 2013 and b? | 2013. But 2013 = 3-11-61 is squarefree and therefore a = 1 = b.

Now we have z = z = d and d* = 2013(y + 2). Once again as 2013 is squarefree, we must
have y + 2 = 2013n? where n is a positive integer.

Hence (z,y, z) = (2013n,2013n? — 2,2013n) where n is a positive integer.

26




IN6. Find all ordered triples (z, y, z) of integers satisfying the following system of equations:
2_ 2
Tt -y’ =z

3zy + (z —y)z = 22

Solution. If z = 0, then = 0 and y = 0, and (z, v, 2) = (0,0, 0).

Let us assume that 2 # 0, and z + y = a and z — y = b where a and b are nonzero integers
such that z = ab. Then z = (a +b)/2 and y = (a — b)/2, and the second equations gives
3a? — 3b? + 4ab® = 4a%p?.

Hence
B = 3a?
. " 402 —4a+3
an

3a%2 > 4a®> —4a +3
which is satisfied only ifa = 1, 2 or 3.

o Ifa=1, then ¥ = 1. (z,9,2) = (1,0,1) and (0,1, —1) are the only solutions in this
case.

e If a = 2, then b? = 12/11. There are no solutions in this case.

e If a = 3, then b* = 1. (z,y,2) = (1,2,-3) and (2, 1, 3) are the only solutions in this

case.

To summarize, (z,y,2) = (0,0,0), (1,0,1), (0,1,-1), (1,2,-3) and (2,1, 3) are the only
solutions.

Comments. 1. The original problem proposal asks for the solutions when z = p is a prime
number.

2. The problem can be asked with a single equation in the form:
3y + (z —y)*(z +y) = (2% —¢?)°

27
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