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Problem 1. Let a, b, c be positive real numbers such that a + b + c = 1.
Prove that
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When does equality hold?

Solution. We have
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. �

Problem 2. Circles k1 and k2 meet at distinct points A and B. Line t
is tangent to k1 and k2 at points M , respectively N . When t ⊥ AM and
MN = 2AM , compute the measure of angle ∠NMB.

Solution. Let P be the midpoint of the segment MN . The powers of the
point P with respect to the circles k1 and k2 are equal, therefore P belongs
to the radical axis of the circles k1 and k2, which is precisely the line AB,
so A,B, P are collinear. Now 4AMP is isosceles right-angled, therefore
∠NMB = ∠MAB = 45◦. Moreover, the point B is the midpoint of the
segment AP , and MB ⊥ AP . �

Problem 3. A number of n > 1 nails are pairwise connected with
monochromatic ropes coloured using n distinct colours. It is given that,
for any three distinct colours, there exist three nails with ropes connecting
them coloured by precisely those three colours. Is it possible that

(a) n = 6 ?
(b) n = 7 ?
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Solution. Each rope participates in precisely n − 2 triangles. There
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all, so it is needed that n
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, henceforth n must be odd.

(a) For n = 6 we thus proved no such colouring is possible.

(b) For n = 7, in order to have such a colouring, one thus needs 3 ropes
of each of the 7 colours used, accounting for precisely all of the 21 ropes,
and each of the 5 triangles made with a rope must be tricolour.

A model is obtained as follows. Label both the nails and the colours by
the elements of F7 = {0, 1, 2, 3, 4, 5, 6}. Assign to rope ij the colour i + j
(mod 7). It is trivial that each triangle ijk (of the 35 possible) is tricolour
(of the 35 possible combinations of 3 colours out of 7). �

Remark. Notice the above holds in general; there is no solution for n
even, and a model for n odd is given by assigning to rope ij the colour
i + j (mod n). As pointed out on AoPS, this precise general question was
Problem 2, Day 2, China National Olympiad 2009.

Problem 4. Determine all positive integers x, y, z, t for which

2x · 3y + 5z = 7t.

Solution. Modulo 3 we must have (−1)z ≡ 5z ≡ 7t ≡ 1 (mod 3), so we
must have z even . Modulo 7 we must have 2x · (−4)y ≡ −(−2)z (mod 7),
thus (−1)y2x+2y ≡ −2z (mod 7), that is 2x+2y−z ≡ −(−1)y (mod 7), which

requires y odd , since 2m ≡ −1 (mod 7) has no solution.

Let us first decide on x = 1. Modulo 4 we must have 2 · 3y ≡ −1 + (−1)t

(mod 4), therefore we must have t odd. Then modulo 5 we must have
2 ·(−2)y ≡ 2t (mod 5), thus 21+y−t ≡ −1 (mod 5), impossible since 1−y+t
is odd, while 2m ≡ −1 (mod 5) requires m even.

So we continue with x ≥ 2. Modulo 4 we must now have 1 ≡ (−1)t

(mod 4), therefore we must have t = 2t′ even . Remember z = 2z′ is also

even, so 2x ·3y = (7t
′−5z

′
)(7t

′
+5z

′
). But gcd(7t

′−5z
′
, 7t
′
+5z

′
) = 2. Now, if

3 | 7t′−5z
′
, then we must have 2 ·3y +5z

′
= 7t

′
(since 7t

′
+5z

′
> 2), which is

the impossible case of the above.1 Therefore we need consider 7t
′−5z

′
= 2x

′

(with, in parallel, 7t
′
+ 5z

′
= 2x−x

′ · 3y), where x′ = 1 or x′ = x− 1.

1The consideration of the case x = 1 now acts in some way as a step in an infinite
descent method of argumentation, leading to focusing on the only other possibility, as that
in the sequel.
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After this effort, we enter a new phase. Modulo 3 we now need have
7t
′ − 5z

′ 6≡ 0 (mod 3), whence z′ odd. But modulo 16 we do have 2x · 3y =

49t
′ − 25z

′ ≡ 8 (mod 16), and this forces x = 3 . One obvious possibility is

t′ = z′ = x′ = 1, with the solution 23 · 31 + 52 = 72 .

The case 7t
′ − 5z

′
= 22 cannot occur, since modulo 3 we would have

2 ≡ 7t
′ − 5z

′
= 22 ≡ 1 (mod 3), absurd; so the only case left is 7t

′ − 5z
′

= 2

(with 7t
′

+ 5z
′

= 22 · 3y).2 Write 7t
′ − 5z

′
= 2 = 7 − 5, or 7(7t

′−1 − 1) =

5(5z
′−1− 1). Since the order of 7 modulo 5 is 4, it means that 4 | t′− 1, and

then 25 · 3 · 52 = 74 − 1 | 7t′−1 − 1, so 52 | 5(5z
′−1 − 1), only possible when

z′ = 1 and t′ = 1, which is the boxed solution above. �

Remark. I do not particularly relish this type of problem; with sterile
manipulations galore modulo carefully chosen numbers, in the chase for some
contradiction. As a matter of strategy, the only reasonable way of attack
is to somehow factorize 7t − 5z (and not some other combination, since the
term 2x ·3y contains two unknowns); thus one is led to reaching the necessary
condition that both z and t must be even, and then using the difference of
squares, as in the solution above.

Presented by Dan Schwarz Bucharest, June 28, 2012

2We can kill it with Lifting The Exponent lemma. We have 7t
′
− 1 = 2 · 3y. Since

v3(7 − 1) = 1, and by LTE v3(7
t′ − 1) = 1 + v3(t

′) = y, we will need 3y−1 | t′, but then,

for y > 1, we would have 7t
′
− 1 > 2 · 3y. Therefore y = 1, and the only solution is the

one boxed above.
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