THE $16^{\text {TH }}$ JUNIOR BALKAN MATHEMATICAL OLYMPIAD 2012, JUNE $25-29$, VERIA, GREECE

DAN SCHWARZ

Problem 1. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+6 \geq 2 \sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right) .
$$

When does equality hold?
Solution. We have $\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}=\sum \frac{b+c}{a}=\sum \frac{1-a}{a}$, so

$$
\begin{gathered}
\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}+\frac{c}{a}+\frac{a}{c}+6-2 \sqrt{2}\left(\sqrt{\frac{1-a}{a}}+\sqrt{\frac{1-b}{b}}+\sqrt{\frac{1-c}{c}}\right)= \\
\sum\left(\frac{1-a}{a}-2 \sqrt{2} \sqrt{\frac{1-a}{a}}+2\right)=\sum\left(\sqrt{\frac{1-a}{a}}-\sqrt{2}\right)^{2} \geq 0
\end{gathered}
$$

Equality occurs when $\sqrt{\frac{1-a}{a}}=\sqrt{\frac{1-b}{b}}=\sqrt{\frac{1-c}{c}}=\sqrt{2}$, therefore when (the expected) $a=b=c=\frac{1}{3}$.

Problem 2. Circles k_{1} and k_{2} meet at distinct points A and B. Line t is tangent to k_{1} and k_{2} at points M, respectively N. When $t \perp A M$ and $M N=2 A M$, compute the measure of angle $\angle N M B$.

Solution. Let P be the midpoint of the segment $M N$. The powers of the point P with respect to the circles k_{1} and k_{2} are equal, therefore P belongs to the radical axis of the circles k_{1} and k_{2}, which is precisely the line $A B$, so A, B, P are collinear. Now $\triangle A M P$ is isosceles right-angled, therefore $\angle N M B=\angle M A B=45^{\circ}$. Moreover, the point B is the midpoint of the segment $A P$, and $M B \perp A P$.

Problem 3. A number of $n>1$ nails are pairwise connected with monochromatic ropes coloured using n distinct colours. It is given that, for any three distinct colours, there exist three nails with ropes connecting them coloured by precisely those three colours. Is it possible that
(a) $n=6$?
(b) $n=7$?

Solution. Each rope participates in precisely $n-2$ triangles. There are $\binom{n-1}{2}=\frac{(n-1)(n-2)}{2}$ triplets of distinct colours containing a fixed colour c, so one needs at least $\left\lceil\frac{(n-1)(n-2) / 2}{n-2}\right\rceil=\left\lceil\frac{n-1}{2}\right\rceil$ ropes of each colour c of the n colours used. Finally, there are $\binom{n}{2}=\frac{n(n-1)}{2}$ ropes in all, so it is needed that $n\left\lceil\frac{n-1}{2}\right\rceil \leq \frac{n(n-1)}{2}$, henceforth n must be odd.
(a) For $n=6$ we thus proved no such colouring is possible.
(b) For $n=7$, in order to have such a colouring, one thus needs 3 ropes of each of the 7 colours used, accounting for precisely all of the 21 ropes, and each of the 5 triangles made with a rope must be tricolour.

A model is obtained as follows. Label both the nails and the colours by the elements of $\mathbb{F}_{7}=\{0,1,2,3,4,5,6\}$. Assign to rope $i j$ the colour $i+j$ $(\bmod 7)$. It is trivial that each triangle $i j k$ (of the 35 possible) is tricolour (of the 35 possible combinations of 3 colours out of 7).

Remark. Notice the above holds in general; there is no solution for n even, and a model for n odd is given by assigning to rope $i j$ the colour $i+j(\bmod n)$. As pointed out on AoPS, this precise general question was Problem 2, Day 2, China National Olympiad 2009.

Problem 4. Determine all positive integers x, y, z, t for which

$$
2^{x} \cdot 3^{y}+5^{z}=7^{t} .
$$

Solution. Modulo 3 we must have $(-1)^{z} \equiv 5^{z} \equiv 7^{t} \equiv 1(\bmod 3)$, so we must have z even. Modulo 7 we must have $2^{x} \cdot(-4)^{y} \equiv-(-2)^{z}(\bmod 7)$, thus $(-1)^{y} 2^{x+2 y} \equiv-2^{z}(\bmod 7)$, that is $2^{x+2 y-z} \equiv-(-1)^{y}(\bmod 7)$, which requires y odd, since $2^{m} \equiv-1(\bmod 7)$ has no solution.

Let us first decide on $x=1$. Modulo 4 we must have $2 \cdot 3^{y} \equiv-1+(-1)^{t}$ $(\bmod 4)$, therefore we must have t odd. Then modulo 5 we must have $2 \cdot(-2)^{y} \equiv 2^{t}(\bmod 5)$, thus $2^{1+y-t} \equiv-1(\bmod 5)$, impossible since $1-y+t$ is odd, while $2^{m} \equiv-1(\bmod 5)$ requires m even.

So we continue with $x \geq 2$. Modulo 4 we must now have $1 \equiv(-1)^{t}$ $(\bmod 4)$, therefore we must have $t=2 t^{\prime}$ even. Remember $z=2 z^{\prime}$ is also even, so $2^{x} \cdot 3^{y}=\left(7^{t^{\prime}}-5^{z^{\prime}}\right)\left(7^{t^{\prime}}+5^{z^{\prime}}\right)$. But $\operatorname{gcd}\left(7^{t^{\prime}}-5^{z^{\prime}}, 7^{t^{\prime}}+5^{z^{\prime}}\right)=2$. Now, if $3 \mid 7^{t^{\prime}}-5^{z^{\prime}}$, then we must have $2 \cdot 3^{y}+5^{z^{\prime}}=7^{t^{\prime}}\left(\right.$ since $7^{t^{\prime}}+5^{z^{\prime}}>2$), which is the impossible case of the above. ${ }^{1}$ Therefore we need consider $7^{t^{\prime}}-5^{z^{\prime}}=2^{x^{\prime}}$ (with, in parallel, $7^{t^{\prime}}+5^{z^{\prime}}=2^{x-x^{\prime}} \cdot 3^{y}$), where $x^{\prime}=1$ or $x^{\prime}=x-1$.

[^0]After this effort, we enter a new phase. Modulo 3 we now need have $7^{t^{\prime}}-5^{z^{\prime}} \not \equiv 0(\bmod 3)$, whence z^{\prime} odd. But modulo 16 we do have $2^{x} \cdot 3^{y}=$ $49^{t^{\prime}}-25^{z^{\prime}} \equiv 8(\bmod 16)$, and this forces $x=3$. One obvious possibility is $t^{\prime}=z^{\prime}=x^{\prime}=1$, with the solution $2^{3} \cdot 3^{1}+5^{2}=7^{2}$.

The case $7^{t^{\prime}}-5^{z^{\prime}}=2^{2}$ cannot occur, since modulo 3 we would have $2 \equiv 7^{t^{\prime}}-5^{z^{\prime}}=2^{2} \equiv 1(\bmod 3)$, absurd; so the only case left is $7^{t^{\prime}}-5^{z^{\prime}}=2$ (with $\left.7^{t^{\prime}}+5^{z^{\prime}}=2^{2} \cdot 3^{y}\right) .{ }^{2}$ Write $7^{t^{\prime}}-5^{z^{\prime}}=2=7-5$, or $7\left(7^{t^{\prime}-1}-1\right)=$ $5\left(5^{z^{\prime}-1}-1\right)$. Since the order of 7 modulo 5 is 4 , it means that $4 \mid t^{\prime}-1$, and then $2^{5} \cdot 3 \cdot 5^{2}=7^{4}-1 \mid 7^{t^{\prime}-1}-1$, so $5^{2} \mid 5\left(5^{z^{\prime}-1}-1\right)$, only possible when $z^{\prime}=1$ and $t^{\prime}=1$, which is the boxed solution above.

Remark. I do not particularly relish this type of problem; with sterile manipulations galore modulo carefully chosen numbers, in the chase for some contradiction. As a matter of strategy, the only reasonable way of attack is to somehow factorize $7^{t}-5^{z}$ (and not some other combination, since the term $2^{x} \cdot 3^{y}$ contains two unknowns); thus one is led to reaching the necessary condition that both z and t must be even, and then using the difference of squares, as in the solution above.

Presented by Dan Schwarz
Bucharest, June 28, 2012

[^1]
[^0]: ${ }^{1}$ The consideration of the case $x=1$ now acts in some way as a step in an infinite descent method of argumentation, leading to focusing on the only other possibility, as that in the sequel.

[^1]: ${ }^{2}$ We can kill it with Lifting The Exponent lemma. We have $7^{t^{\prime}}-1=2 \cdot 3^{y}$. Since $v_{3}(7-1)=1$, and by LTE $v_{3}\left(7^{t^{\prime}}-1\right)=1+v_{3}\left(t^{\prime}\right)=y$, we will need $3^{y-1} \mid t^{\prime}$, but then, for $y>1$, we would have $7^{t^{\prime}}-1>2 \cdot 3^{y}$. Therefore $y=1$, and the only solution is the one boxed above.

