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Problem 1 
Let , anda b c   be positive real numbers such that 1a b c+ + = . Prove that  

1 1 16 2 2a b b c c a a b c
b a c b a c a b c

⎛ ⎞− − −
+ + + + + + ≥ + +⎜ ⎟⎜ ⎟

⎝ ⎠
 

When does equality hold? 
 
Solution 
Replacing 1 ,1 ,1a b c− − −  with , ,b c c a a b+ + +  respectively on the right hand side, 
the given inequality becomes 

                   
6 2 2b c c a a b b c c a a b

a b c a b c
⎛ ⎞+ + + + + +

+ + + ≥ + +⎜ ⎟⎜ ⎟
⎝ ⎠

 

and equivalently 
           

2 2 2 2 2 2 2 2 2 0b c b c c a c a a b a b
a a b b c c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + +
− + + − + + − + ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
which can be written as  

2 2 2

2 2 2 0b c c a a b
a b c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +
− + − + − ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, 

which is true. 
      The equality holds if and only if  

                                                b c c a a b
a b c
+ + +

= = ,  

which together with  the given condition 1a b c+ + =  gives 1
3

a b c= = = . 

 
 
 
 
 
 
 
 
 



Problem 2 
Let the circles 1k  and 2k  intersect at two distinct points Α  and Β , and let t  be a 
common tangent of 1k  and 2k , that touches 1k  and 2k   at Μ  and Ν , respectively. If 
t AM⊥  and 2ΜΝ ΑΜ= , evaluate NMB∠ . 
 
Solution 1 
 Let P be the symmetric of A with respect to M (Figure 1). Then AM MP=  and 
t AP⊥ , hence the triangle APN is isosceles with AP  as its base, so NAP NPA∠ = ∠ . 
We have  BAP BAM BMN∠ = ∠ = ∠  and BAN BNM∠ = ∠ .  
Thus we have 
           0180 NBM BNM BMN BAN BAP NAP NPA−∠ = ∠ +∠ = ∠ +∠ = ∠ = ∠  
 so the quadrangle MBNP  is cyclic (since the points B  and P  lie on different sides of  
MN ). Hence APB MPB MNB∠ = ∠ = ∠  and the triangles APB and MNB are 
congruent ( 2ΜΝ ΑΜ = ΑΜ + ΜΡ = ΑΡ= ). From that we get AB = MB , i.e. the 
triangle AMB  is isosceles, and since t is tangent to 1k  and perpendicular to AM, the 
centre of 1k  is on  AM, hence AMB is a right-angled triangle. From the last two 
statements we infer 045AMB∠ = , and so 090 45NMB AMB∠ = −∠ = .  
 

 
                                                        Figure 1 
 
Solution 2 
 Let C be the common point of MN, AB (Figure 2).  Then 2CN CB CA= ⋅  and 

2CM CB CA= ⋅ . So CM CN= . But 2MN AM= , so CM CN AM= = , thus the right 
triangle ACM is isosceles, hence 045NMB CMB BCM∠ = ∠ = ∠ = . 
 

 
                                                             Figure 2 
 
 
 
 
 
 



Problem 3 
On a board there are n nails each two connected by a string. Each string is colored in 
one of n given distinct colors. For each three distinct colors, there exist three nails 
connected with strings in these three colors. Can n be   
 a) 6?       b) 7? 
 

Solution. (a) The answer is no. 
Suppose it is possible. Consider some color, say blue. Each blue string is the side of  4 

triangles formed with vertices on the given points. As there exist  
5 5·4 10
2 2
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 pairs 

of colors other than blue, and for any such pair of colors together with the blue color 
there exists a triangle with strings in these colors, we conclude that there exist at least 
3 blue strings (otherwise the number of triangles with a blue string as a side would be 
at most 2·4 8= , a contradiction). The same is true for any color, so altogether there 

exist at least 6·3 18=  strings, while we have just 
6 6·5 15
2 2
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 of them. 

(b) The answer is yes 
Put the nails at the vertices of a regular 7-gon and color each one of its sides in a 
different color. Now color each diagonal in the color of the unique side parallel to it. 
It can be checked directly that each triple of colors appears in some triangle (because 
of symmetry, it is enough to check only the triples containing the first color).  
 

 
 
Remark. The argument in (a) can be applied to any even n. The argument in (b) can 
be applied to any odd   2   1n k= +  as follows: first number the nails as 0,1,2 ,2k…  
and similarly number the colors as 0,1,2 ,2k… . Then connect nail x  with nail y  by a 
string of color  (mod )x+ y n . For each triple of colors ( )p, q, r  there are vertices 

, ,x y z  connected by these three colors. Indeed, we need to solve (mod )n  the system  
                                    ( ) ( )* x+ y p, x+ z q, y+ z r≡ ≡ ≡  
Adding all three, we get 2(x+ y+ z) p+q+r≡  and multiplying by 1k +  we get 
x+ y+ z (k +1)(p+q+r)≡ . We can now find , ,x y z  from the identities ( )* . 



Problem 4 
Find all positive integers x, y, z  and t  such that 

2 ·3 75+ =x y z t . 
 
Solution 
Reducing modulo 3 we get 5 1≡z , therefore z is even, 2 ,= ∈z c c . 
Next we prove that t is even: 
Obviously, 2≥t . Let us suppose that t is odd, say 2 1,= ∈+t d d . The equation 
becomes x y c d2 ·3 25 .7·49+ =  If 2≥x , reducing modulo 4 we get 1 3≡ , a 
contradiction. And if 1=x , we have 2 25·3 7·49+ =y c d  and reducing modulo 24 we 
obtain 

·3 1 7 24 | 2(32 3)+ ≡ ⇒ −y y ,  i.e.  14 | 3 1− −y  
which means that 1−y  is even. Then 2 1,= ∈+y b b . We obtain 6 25· 79 ·49+ =b c d , 
and reducing modulo 5 we get 2·() 1)( 1− ≡ −b d , which is false for all , ∈b d .  Hence 
t is even, 2 ,= ∈t d d , as claimed. 
Now the equation can be written as 

( )( )2 25 49 2 7 5 7·3 · 5 .3+ = ⇔ = − +x y d d x y d c d c  

As ( )gcd 7 5 ,7 5 2− + =d c d c  and 7 5 2+ >d c , there exist exactly three possibilities: 
d d x 1 d d y d d

d d y d d x 1 d d x 1 y

7 7 7
(1) ; (2) ; (3)

7 7 7
5 2 5 2·3 5 2
5 2·3 5 2 5 2 ·3

−

− −

⎧ ⎧ ⎧− − −⎪ ⎪ ⎪
⎨ ⎨ ⎨
⎪

=

⎪

= =

+ = + =⎩ = +⎪⎩ ⎩
 

 
Case (1) 
We have 27 2 3−= +d x y  and reducing modulo 3, we get 2 1(m 3)2 od− ≡x , hence 2−x  
is even, i.e. 2 2,= ∈+x a a , where 0>a ,  since 0=a  would mean 3 1 7+ =y d , 
which is impossible (even = odd). 
We obtain  

mod 4
2·4 1(mod 4) ,7 5 7 2= ≡ ⇒ =− ∈⇒d d a d d e e . 

Then we have 
mod8

49 5 52·4 1(mod8) 2 ,= ≡ ∈− =⇒ ⇒e cd a c f f . 

We obtain 
mod 3

4 2·4 3)0 2(9 25− = ≡⇒ae f mod , false. In conclusion, in this case there 
are no solutions to the equation. 
 
Case (2) 
 From 12 7 5 12− = ≥+x d c  we obtain 5≥x . Then 5 0(m d 47 o )+ ≡d c ,  i.e. 

1 0(m 4)3 od+ ≡d , hence d is odd. As 5 2·3 117 = + ≥d c y , we get 2≥d , hence 
2 1,= ∈+d e e .  

As in the previous case, from 27 2 3−= +xd y  reducing modulo 3 we obtain 2 2= +x a  
with 2≥a  (because 5≥x ). We get 7 4 3= +d a y  i.e. 4·49 37 = +e a y , hence, reducing 
modulo 8 we obtain 7 3≡ y which is false, because 3y  is congruent either to 1 (if y is 
even) or to 3 (if y is odd). In conclusion, in this case there are no solutions to the 
equation. 
 



Case (3) 
 From 7 5 2+=d c  it follows that the last digit of 7d  is 7, hence 4 1,= ∈+d k k . 
 
If 2≥c , from 4 1 5 27 + = +k c  reducing modulo 25 we obtain 2( 25)7 ≡ mod  which is 
false. For 1=c  we get 1=d  and the solution 3, 1, 2= = = =x y z t . 
 
 
 


