# Third team selection test 

for Junior Balkan Mathematical Olympiad
Bucharest, April 27, 2013

Problem 10. Let $n$ be a positive integer. Determine all positive integers $p$ for which there exist positive integers $x_{1}<x_{2}<\ldots<x_{n}$ such that

$$
\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{n}{x_{n}}=p
$$

## Irish Mathematical Olympiad

Solution. Call good a number $p$ for which there exist positive integers $x_{1}<x_{2}<\ldots<x_{n}$ such that $\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{n}{x_{n}}=p$.

Since $x_{1}, x_{2}, \ldots, x_{n}$ are integers and $x_{1}<x_{2}<\ldots<x_{n}$, we have $x_{k} \geq k$, so $\frac{k}{x_{k}} \leq 1$, for all $k=1,2, \ldots, n$. Then $\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{n}{x_{n}} \leq n$, so every good number, if there exists any, is between 1 and $n$.

Next, we will show that any integer $p \in\{1,2, \ldots, n\}$ is good. Obviously, $n$ is good (for $x_{k}=k$ ) and 1 is also good (take $x_{k}=k n$ ). For $2 \leq p \leq n-1$, we write:

$$
\sum_{k=1}^{n} \frac{k}{x_{k}}=\left(\frac{1}{x_{1}}+\frac{2}{x_{2}}+\ldots+\frac{p-1}{x_{p-1}}\right)+\left(\frac{p}{x_{p}}+\ldots+\frac{n}{x_{n}}\right)
$$

so it is enough to choose $x_{1}, x_{2}, \ldots, x_{n}$ such that the first sum is equal to $p-1$, and the second sum is equal to 1 . We can do that by setting $x_{k}=k$, for $k=1,2, \ldots, p-1$ and $x_{k}=k(n-p+1)$, for $p \leq k \leq n$. Notice that $x_{1}<x_{2}<\ldots<x_{n}$ in all cases, so the good numbers are indeed $1,2, \ldots, n$.

Problem 11. Find all positive integers $x, y, z$ such that $7^{x}+13^{y}=8^{z}$.
Lucian Petrescu
Solution 1. Reducing modulo 3 and modulo 4 , we must have that $x$ and $z$ are odd. Let $z=2 m+1$ and $x=2 n+1$, where $m$ and $n$ are natural number; we have then $7^{2 n+1}+13^{y}=8^{2 m+1}$.
a) If $n=3 s$, we have $7^{6 s+1}+13^{y} \equiv 7 \cdot 343^{2 s} \equiv 7 \cdot 25^{s} \equiv 7 \cdot(-1)^{s}(\bmod 13)$ and $8^{2 m+1}=8 \cdot 64^{m} \equiv 8 \cdot(-1)^{m}(\bmod 13)$, so this case yields no solutions.
b) If $n=3 s+2$, then $7^{6 s+5}+13^{y} \equiv 49 \cdot 343^{2 s+1} \equiv 50 \cdot 25^{s} \equiv 11 \cdot(-1)^{s}(\bmod 13)$ and $8^{2 m+1}=8 \cdot 64^{m} \equiv 8 \cdot(-1)^{m}(\bmod 13)$; again, no solutions.
c) If $n=3 s+1$, we have $7^{6 s+3}+13^{y}=8^{2 m+1}$, which leads to

$$
\left(2^{2 m+1}-7^{2 s+1}\right)\left(4^{2 m+1}+2^{2 m+1} \cdot 7^{2 s+1}+49^{2 s+1}\right)=13^{y} .
$$

Taking $a=2^{2 m+1}, b=7^{2 s+1}$, it is easy to show that $\left(a-b, a^{2}+a b+b^{2}\right)=1$, so $a-b=1$ (and $a^{2}+a b+b^{2}=13^{y}$ ). It follows that $2^{2 m+1}=7^{2 s+1}+1$, so $2^{2 m+1}=$ $8 \cdot\left(7^{2 s}-7^{2 s-1}+\ldots-7+1\right)$.

If $m \geq 2$, we get $2^{2 m-2}=7^{2 s}-7^{2 s-1}+\ldots-7+1$, a contradiction, because the right hand sum is an odd number. For $m=1$ we get $s=0$ and the solution $x=3, y=2, z=3$.

Solution 2. Notice that $7^{x} \equiv 8^{z}(\bmod ) 13$. According to Fermat's Little Theorem, we have $7^{12 k} \equiv 1(\bmod 13)$ and $8^{12 k} \equiv 1(\bmod 13)$, for each integer $k$. Studying the following table of residues modulo 13 :

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7^{n}(\bmod 13)$ | $\mathbf{1}$ | 7 | 10 | $\mathbf{5}$ | 9 | 11 | $\mathbf{1 2}$ | 6 | 3 | $\mathbf{8}$ | 4 | 2 |
| $8^{n}(\bmod 13)$ | $\mathbf{1}$ | 8 | 12 | $\mathbf{5}$ | 1 | 8 | $\mathbf{1 2}$ | 5 | 1 | $\mathbf{8}$ | 12 | 5 |

we deduce that $7^{x} \equiv 8^{z}(\bmod ) 13$ if and only if $x$ and $z$ are both divisible by 3 . Set $x=3 t$, $z=3 u$; it follows that

$$
13^{y}=8^{3 u}-7^{3 t}=\left(8^{u}-7^{t}\right)\left(8^{2 u}+8^{u} 7^{t}+7^{2 t}\right)
$$

Since $\left(8^{u}-7^{t}, 8^{2 u}+8^{u} 7^{t}+7^{2 t}\right) \mid 3$, we must have $8^{u}-7^{t}=1$. But $7^{t}(\bmod 16) \in\{1,7\}$, so $8^{u}(\bmod 16) \in\{2,8\}$. This is possible only if $u=1$, so $t=1$, which leads to $x=3, y=2$, $z=3$.

Problem 12. Let $A B C D$ be a cyclic quadrilateral and $\omega_{1}, \omega_{2}$ the incircles of triangles $A B C$ and $B C D$. Show that the common external tangent line of $\omega_{1}$ and $\omega_{2}$, the other one than $B C$, is parallel with $A D$.

Ştefan Spătaru
Solution. Let $I_{1}, I_{2}$ be the incenters of $A B C$ and $B C D$ and $t$ the other external tangent line of $\omega_{1}$ and $\omega_{2}$. The problem is trivial if lines $A D$ and $B C$ are parallel, so we'll suppose that $A D$ is not parallel to $B C$. Denote by $V$ the intersection point of $A D$ and $B C$.

Since one of the exterior tangents of two circles is the reflection of the other one abou the line the passes through the centers, it follows that $t, B C$ and $I_{1} I_{2}$ are concurrent in a point $U$.

We have $\angle B I_{1} C=90^{\circ}+\angle B A C=90^{\circ}+\angle B D C=\angle B I_{2} C$, so $B C I_{2} I_{1}$ is a cyclic quadrilateral. It follows that

$$
\begin{aligned}
\angle I_{1} U B & =\frac{1}{2}\left(m\left(\overparen{C I}_{2}\right)-m\left(\overparen{B I_{1}}\right)\right)=\angle I_{2} B C-\angle I_{1} C B=\frac{1}{2}(\angle D B C-\angle A C B)= \\
& =\frac{1}{4}(m(\overparen{D C})-m(\overparen{A B}))=\frac{1}{2} \angle A V B,
\end{aligned}
$$

hence $\angle(A D, B C)=2 \angle\left(I_{1} I_{2}, B C\right)$. This leads to $\angle(t, B C)=2 \angle\left(I_{1} I_{2}, B C\right)=\angle(A D, B C)$, so $t \| A D$.

Problem 13. Find all integers $n \geq 2$ with the property:
there is a permutation $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of the set $\{1,2, \ldots, n\}$ so that the numbers

$$
a_{1}+a_{2}+\ldots+a_{k}, k=1,2, \ldots n,
$$

have different remainders when divided by $n$.

Solution. Let $n$ be such a number. For every $k=\overline{1, n}$, set $r_{k}$ the remainder obtained from the division of $s_{k}=a_{1}+a_{2}+\ldots+a_{k}$ by $n$.

First, we prove that $a_{1}=n$. Arguing by contradiction, there would be $k \geq 2$ so that $a_{k}=n$. Since $s_{k}=s_{k-1}+n$, we have $n \mid s_{k}-s_{k-1}$, which means that $r_{k}=r_{k-1}$, false. We have then $a_{1}=n$ and $r_{1}=0$.

Since $s_{n}=\frac{n(n+1)}{2}$, if $n$ would be an odd number, then $n \mid s_{n}$, so $r_{n}=0=r_{1}$, a contradiction. As a consequence, $n$ must be even; we will show that every even number has the property required by the problem. Indeed, consider $n$ even and, for $k=1,2, \ldots, n$, define

$$
a_{k}=\left\{\begin{array}{ll}
n+1-k, & k \text { odd } \\
k-1, & k \text { even }
\end{array} .\right.
$$

For each $k \in\left\{1,2, \ldots, \frac{n}{2}\right\}$, we have

$$
\begin{aligned}
s_{2 k-1} & =a_{1}+a_{2}+\ldots+a_{2 k-1}=k(n-1)+1 ; \\
s_{2 k} & =a_{1}+a_{2}+\ldots+a_{2 k}=k(n+1),
\end{aligned}
$$

so

- $r_{2 k-1}=k(n-1)+1-n\left\lfloor\frac{k n-(k-1)}{n}\right\rfloor=k(n-1)+1-n \cdot\left\lfloor k-\frac{k-1}{n}\right\rfloor= \begin{cases}0 & , k=1 \\ n-k+1, & k \geq 2\end{cases}$
- $r_{2 k}=k(n+1)-n\left\lfloor\frac{k(n+1)}{n}\right\rfloor=k(n+1)-n \cdot\left\lfloor k+\frac{k}{n}\right\rfloor=k(n+1)-n k=k$.

Obviously, if $a, b \in\{1,2, \ldots, n-1\}$ have the same parity, then $r_{a} \neq r_{b}$. If there would exist $k, j \in\left\{1,2, \ldots, \frac{n}{2}\right\}$ so that $r_{2 k-1}=r_{2 j}$, then $j=0$ or $j=n-k+1$, impossible.

Remark. The original problem, selected from the shortlist of the national round of romanian mathematical olympiad in 2006, stated like this:

Let $n$ be a positive integer. A bijection $f:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ has the property $\mathcal{P}$ if

$$
g(k)=f(1)+f(2)+\ldots+f(k)-n\left\lfloor\frac{f(1)+f(2)+\ldots+f(k)}{n}\right\rfloor, k=1,2, \ldots, n
$$

defines a bijection $g:\{1,2, \ldots, n\} \rightarrow\{0,1, \ldots, n-1\}$. Show that there exists functions with the property $\mathcal{P}$ if and only if $n$ is even.

