Isogonal Conjugates

Navneel Singhal
navneel.singhal@ymail.com

October 9, 2016

Abstract

This is a short note on isogonality, intended to exhibit the uses of isogonality in mathematical olympiads.

Contents

§ Notations 2
§ Isogonal Lines 2

- Properties 3
§ Isogonal Conjugates 4
- Properties 4
- Some useful isogonal conjugates 5
§ Examples 6
§ Problems 9
- Easy ones 9
- Medium Problems 9
- Harder tasks 10
§ Hints to harder tasks 11

§ Notations

Here are some notations we'll use in this note.

1. The abbreviation 'wrt' stands for 'with respect to'.
2. I, O, H, G stand for the incenter, circumcenter, orthocenter and the centroid of $\triangle A B C$ respectively.
3. $(X Y),(X Y Z)$ stand for the circle with $X Y$ as diameter and the circle through non-collinear X, Y, Z respectively.
4. P^{*} stands for the isogonal conjugate of a point P.
5. $P_{\infty \| M N}$ stands for the point at infinity on the line $\overline{M N}$.
6. $\stackrel{P}{=}$ stands for equality of cross-ratios due to perspectivity at P.

§ Isogonal Lines

Definition

Two lines meeting at a point A are said to be isogonal with respect to an angle $\measuredangle B A C$ if they can be obtained by a reflection over the angle bisector of $\measuredangle B A C$.

Also if one line (not necessarily through A) can be obtained from the other via a reflection about the angle bisector and a homothety, then they are called antiparallel with respect to the angle.

- Properties

In the following we let l and m be isogonal lines with respect to an angle $\measuredangle B A C$.

1. Let P be a point on l and the feet of perpendiculars from P to $A B, A C$ be P_{c}, P_{b}. Then $P_{b} P_{c} \perp m$.

Proof. Exercise.
2. (Symmedians Lemma) Let M be the midpoint of $\overline{B C}$ and let the tangents to the circumcircle meet at $X . A X \cap(A B C)=K$ and $A X \cap B C=J$. Then the following hold:

- $A K$ is a symmedian in $\triangle A B C$.
$-\frac{B J}{J C}=\left(\frac{A B}{A C}\right)^{2}$.
- $B C A K$ is a harmonic quadrilateral.
- $A B K \sim A M C$.
- $(A O)$ and $(B O C)$ meet on the midpoint of $A K$.
- $B C$ is a symmedian in both $B A K$ and $C A K$.
- $B C$ is one angle bisector of $\measuredangle A M K$ and $M X$ is the other one.
- Tangents to $(A B C)$ at A and K meet on $B C$.

Proof. Exercise. One of the proofs of the first fact is in the examples. Try finding atleast 3 others.
3. Let the cevians $A D_{1}$ and $A D_{2}$ be isogonal wrt $B A C$. Then the circumcircles of $A D_{1} D_{2}$ and $A B C$ are tangent together.

Proof. Exercise.
4. (Isogonal Line Lemma): Let P and Q be points on l, m respectively. $B P$ intersects $C Q$ at L_{1} and $B Q$ intersects $C P$ at L_{2}. Then $A L_{1}$ and $A L_{2}$ are isogonals wrt $\measuredangle B A C$.

Proof. Exercise. This also appears in St. Petersburg Mathematical Olympiad.
5. Let P be a point on the perpendicular bisector of $B C$ and let P^{\prime} be its inverse in the circumcircle. Then $A P$ and $A P^{\prime}$ are isogonal wrt $\measuredangle B A C$.

Proof. Follows from the Symmedians lemma.

§ Isogonal Conjugates

Definition

Two points P and P^{*} are called isogonal conjugates if $\overline{A P}$ and $\overline{A P^{*}}$ are isogonal wrt $\measuredangle A$, $\overline{B P}$ and $\overline{B P^{*}}$ are isogonal wrt $\measuredangle B$ and $\overline{C P}$ and $\overline{C P^{*}}$ are isogonal wrt $\measuredangle C$.

Proof. Usually proved using trig Ceva, but see the following for a synthetic proof.

- Properties

1. Let P 's reflections in $B C, C A, A B$ be P_{a}, P_{b}, P_{c} respectively. Then the circumcenter of the triangle $\triangle P_{a} P_{b} P_{c}$ is the isogonal conjugate of P, henceforth denoted by P^{*}.

Proof. Let Q be the required circumcenter. Then from $A Q P_{b} \cong A Q P_{c}, \measuredangle Q A P_{b}=$ $\measuredangle Q A P_{c}$, from which $A Q$ and $A P$ are isogonal wrt $\measuredangle B A C$. From this and other similar relations, P and Q are isogonal conjugates, as required.
2. If D_{1} and D_{2} are as in Property 3 of section on properties of isogonal lines, then $\frac{B D_{1} \cdot B D_{2}}{C D_{1} \cdot C D_{2}}=\frac{A B^{2}}{A C^{2}}$.

Proof. Exercise
3. The pedal triangles of P and its isogonal conjugate have the same circumcircle with the circumcenter being the midpoint of $P P^{*}$.

Proof. Homothety.
4. $A P \cap B C=D$ and $A P^{*} \cap(A B C)=D^{\prime}$. Then $A D \cdot A D^{\prime}=A B \cdot A C$.

Proof. Inversion
5. $\measuredangle B P C+\measuredangle B P^{*} C=\measuredangle A$

Proof. Angle chasing
6. The insimilicenter and the exsimilicenter of $(B P C)$ and $\left(B P^{*} C\right)$ lie on $(A B C)$.

Proof. Exercise.
7. If the circumcenters of $(B P C)$ and $\left(B P^{*} C\right)$ are O_{1} and O_{2} then $A O_{1}$ and $A O_{2}$ are isogonal with respect to $\measuredangle B A C$.

Proof. Follows from the previous fact and Property 5 in the section on properties of isogonal lines.
8. Let \mathcal{E} be a conic with foci F_{1} and F_{2}, with the tangents t_{1} and t_{2} from a point X meeting it at X_{1} and X_{2}. Then the following hold true:

- $X X_{1}$ and $X X_{2}$ are isogonal with respect to $\measuredangle X_{1} X X_{2}$.
- $X F_{i}$ bisects $\measuredangle X_{1} F_{i} X_{2}$ where $i=1$ or 2 .
- The normals and the tangents at X_{i} bisect $\measuredangle F_{1} X_{i} F_{2}$ where $i=1$ or 2 .
- The reflection of F_{i} over t_{i} is collinear with the other focus and one tangency point.

Also for every pair of isogonal conjugates, a conic tangent to all three sides of $\triangle A B C$ and having them as the foci exists.

Proof. Exercise. Use a good characterisation of the tangent to the conic (sum and difference of distances).

- Some useful isogonal conjugates

Point	Isogonal Conjugate
Orthocenter	Circumcenter
Centroid	Point of concurrence of symmedians
Gergonne Point	Insimilicenter of the circumcircle and the incircle
Nagel Point	Exsimilicenter of the circumcircle and the incircle
In/Excenters	Themselves
Nine point center	Kosnita point

For more, see the Kimberling Encyclopedia of Triangle Centers.

§ Examples

1. Symmedians lemma

Proof. Let the reflection of A in M be D. Then $B D, B X$ are isogonal and $C D, C X$ are isogonal. Thus, D and X are isogonal conjugates, and so $A D$ and $A X$ are isogonal, as desired.
2. (IMO 2000 SL G3): Do there exist points D, E, F on $B C, C A, A B$ of an acute triangle $\triangle A B C$ respectively such that $A D, B E, C F$ concur and $O D+D H=O E+E H=$ $O F+F H=R$?

Proof. Yes, there exist such points.
Consider the conic with foci O, H and tangent to the sides of $\triangle A B C$. Since the reflections of H over the sides lie on the circumcircle, for any point X of the ellipse, $O X+X H=R$. Now Brianchon's theorem finishes the problem.
3. (USAMO 2008 P 2): Let the A-median of a triangle $A B C$ be $A M$, and let the perpendicular bisectors of $A B$ and $A C$ meet $A M$ at D and $E . B D$ and $C E$ intersect at F. Prove that A, F, O and the midpoints of $A B$ and $A C$ are concyclic.

Proof. Note that $\measuredangle B F C=2 \measuredangle A=\measuredangle B O C$ and so B, F, O, C lie on a circle. We need that the circle with $A O$ as diameter and $(B O C)$ meet at F, for which it suffices to show that $A F$ is a symmedian. Consider the isogonal conjugate of F, say F^{*}. By the angle conditions, both $\left(A F^{*} B\right)$ and $\left(A F^{*} C\right)$ are tangent to $B C$, and thus by radical axis, $A F^{*}$ is a median, which completes the proof.

The point F^{*} is sometimes called the A-humpty point (Warning: this notation is not at all standard). We shall encounter this point later too.

4. (AoPS): Let I be the incenter of $A B C$ and let l be the line through I and perpendicular to $A I$. The perpendicular to $A B$ through B and that to $A C$ through C meet l at E and F respectively. The feet of perpendiculars from E and F to l onto $B C$ are M and N. Prove that $(A M N)$ and $(A B C)$ are tangent together.

Proof. Firstly note that if I_{b}, I_{c} are the excenters opposite B and C, then B, A, E lie on the circle with $I I_{b}$ as diameter and so I_{b}, E, M are collinear by angle chasing.In fact, $I_{b} I_{c} F E$ is a rectangle.
If the external and the internal bisectors of $\measuredangle B A C$ meet $B C$ at D_{2}, D_{1} respectively, then, $-1=\left(B, C ; D_{1}, D_{2}\right) \stackrel{I_{a}}{=}\left(I_{c}, I_{b} ; A, D_{2}\right) \stackrel{P_{\infty} \| A I}{=}\left(N, M ; D_{1}, D_{2}\right)$ and now since $A D_{1} \perp A D_{2}$, they are the bisectors of $\measuredangle M A N$, from which it follows that $A M$ and $A N$ are isogonal cevians, from which the conclusion follows.

§ Problems

The problems here are not sorted by difficulty; by easy we mean less interesting problems, by hard we mean interesting ones.

- Easy ones

1. Complete all the proofs left as exercises.
2. Prove that $I O=I H$ if and only if one of the angles of the triangle is 60°.
3. Prove that the isogonal of $A P$ wrt $\measuredangle B P C$ and that of $A P^{*}$ wrt $\measuredangle B P^{*} C$ are symmetric wrt $B C$. (In fact, they meet on the tangency point of some special conic with $B C$).
4. Prove the following facts about the A-Humpty point:

- Circles tangent to $B C$ and passing through A, B and A, C respectively, the circle with $A H$ as diameter, the circumcircle of $B H C$, the A-median, and the circumcircle of the triangle formed by the midpoint of $A H$, the reflection of O in $B C$ and the midpoint of $B C$ all pass through the A-Humpty point.
- It is the inverse of the midpoint of $B C$ under the inversion with radius $\sqrt{A H \cdot A D}$ and center A where H is the orthocenter and $A D$ is an altitude in $A B C$.

5. Find the complex and the barycentric coordinates of the isogonal conjugate of an arbitrary point P, assuming that the circumcircle is the unit circle.

- Medium Problems

1. Let O be the circumcenter of $A B C$ and let the tangents to the circumcircle at A, B, C form a triangle $X Y Z$, and let the orthic triangle of $A B C$ be $D E F$. Prove that the isogonal conjugate of O wrt $D E F$ is the orthocenter of $X Y Z$.
2. Let the points of intersection of $A P, B P, C P$ with $B C, C A, A B$ be $A^{\prime}, B^{\prime}, C^{\prime}$ respectively. Then prove that if the isogonal conjugate of P wrt $A B C$ is Q then the reflections of $A Q, B Q, C Q$ in $B^{\prime} C^{\prime}, C^{\prime} A^{\prime}, A^{\prime} B^{\prime}$ respectively concur at a point.
3. Let $D E F$ be the pedal triangle of P wrt $A B C$, and let the points X, Y, Z be on $P D, P E, P F$ respectively such that $P D \cdot P X=P E \cdot P Y=P F \cdot P Z$. Then prove that $A X, B Y, C Z$ concur at a point whose isogonal conjugate is on the line $O P^{*}$.
4. Let K be the symmedian point of $A B C$, the isogonal conjugate of G. Prove the following properties:
(a) It is the unique point which is the centroid of its pedal triangle.
(b) The midpoint of the A-altitude, the midpoint of $B C$ and K are collinear.
(c) (Lemoine circle): Lines parallel to the sides of the triangle through K are drawn. Prove that the points of intersections of these parallels with the sides are concyclic.
(d) (Another Lemoine circle): Lines antiparallel to the sides of the triangle through K are drawn, meeting the remaining sides in U, V, W, X, Y, Z. Prove that these points are concyclic.
(e) The symmedians meet $(A B C)$ at K_{a}, K_{b}, K_{c}. Prove that K is the symmedian point of the triangle formed by these points too.

- Harder tasks

1. (EMMO 201 ${ }^{1}$ Let $A B C$ be a triangle, the orthocenter of whose intouch triangle is P. The reflections of P over the perpendicular bisectors of $B C, C A, A B$ are X, Y, Z, and the midpoints of $Y Z, Z X, X Y, B C, C A, A B$ are $D, E, F, A_{1}, B_{1}, C_{1}$. Prove that $A_{1} D, B_{1} E, C_{1} F$ concur at the radical center of the nine-point circles of $I_{a} B C, I_{b} C A, I_{c} A B$, where I_{a}, I_{b}, I_{c} are the excenters of the triangle $A B C$, opposite to A, B, C respectively.
2. (ELMO 2016, wording modified ${ }^{2}$) Let $A B C$ be a triangle and let $D E F$ be the intouch triangle, $A D, B E, C F$ being cevians. $A I$ meets $D E, D F$ at M, N respectively. S and T are points on $B C$ such that $\measuredangle M S N=\measuredangle M T N=90^{\circ}$. Prove that:
(a) $(A S T)$ is tangent to the circumcircle of $A B C$.
(b) $(A S T)$ is tangent to the incircle of $A B C$.
(c) ${ }^{3}(A S T)$ is tangent to the A-excircle of $A B C$.
[^0]
§ Hints to harder tasks

1. - For any general P, prove that the concurrency point is actually the complement of the isogonal conjugate of P, where the complement of any point is its image under the homothety $\mathbb{H}\left(G, \frac{-1}{2}\right)$.

- Then prove that the isogonal conjugate of the given point P is the concurrency point of the Euler lines of $I B C, I C A, I A B$, known as the Schiffler point.
- To finish, prove that the complement of the Schiffler point is the radical center of the given nine-point circles.

2. Use isogonal lines, inversion, etc, etc, etc.

§ References

[1] Grinberg D., Isogonal conjugation with respect to a triangle, 23.09.2006
[2] Various posts on www.artofproblemsolving.com.

[^0]: ${ }^{1}$ This year's test was named "Every Mathematician Must Outperform"
 ${ }^{2}$ This was "Elmo Lives Mostly Outside"
 ${ }^{3}$ This wasn't part of the original problem, but looks good.

