0.1. GEOMETRY 3 # 0.1 Geometry **G1** Let ABC be an isosceles triangle with AB = AC. On the extension of the side [CA] we consider the point D such that AD < AC. The perpendicular bisector of the segment [BD] meets the internal and the external bisectors of the angle \widehat{BAC} at the points E and E, respectively. Prove that the points E are concyclic. ## **Solution 1** In $\triangle ABD$ the ray [AZ] bisects the angle \widehat{DAB} and the line ZE is the perpendicular bisector of the side [BD]. Hence Z belongs to the circumcircle of $\triangle ABD$. Therefore the points A, B, D, Z are concyclic. In $\triangle BCD$, AE and ZE are the perpendicular bisectors [BC] and [BD], respectively. Hence, E is the circumcenter of $\triangle BCD$ and therefore $\widehat{DEZ} = \widehat{BED}/2 = \widehat{ACB}$. Since $BD \perp ZE$, we conclude that: $\widehat{BDE} = 90^{\circ} - \widehat{DEZ} = 90^{\circ} - \widehat{ACB} = \widehat{BAE}$. Hence the quadrilateral AEBD is cyclic, that is the points A,B,D,E are concyclic. Therefore, since A,B,D,Z are also concyclic, we conclude that AEZD is cyclic. #### Solution 2 In $\triangle ABD$ the ray [AZ] bisects the angle \widehat{DAB} and the line ZE is the perpendicular bisector of the side [BD]. Hence Z belongs to the circumcircle of $\triangle ABD$. Therefore the points A,B,D,Z are concyclic. Let M and N be the midpoints of the sides [BC] and [DB], respectively. Then $N \in ZE$ and $M \in AE$. Next, [MN] is a midline in $\triangle BCD$, so $MN \parallel CD \Rightarrow \widehat{NMB} \equiv \widehat{ACB}$. But [AZ] is the external bisector of the angle \widehat{BAC} of $\triangle ABC$, hence $\widehat{BAZ} \equiv \widehat{ACB}$. Therefore, $\widehat{NMB} \equiv \widehat{BAZ}$. In the quadrilateral BMEN we have $\widehat{BNE} = \widehat{BME} = 90^\circ$, so BMEN is cyclic $\Rightarrow \widehat{NMB} \equiv \widehat{BEZ}$, hence $\widehat{BAZ} \equiv \widehat{BEZ} \Rightarrow AEBZ$ is cyclic. Therefore, since A, B, D, Z are also concyclic, we conclude that AEZD is cyclic. ## Solution 3 Let T be the symmetric of B with respect to the axis AZ. Obviously $T \in AD$. Since AE and BT are both perpendiculars to AZ, they are parallel, so $\widehat{BAC} \equiv \widehat{BTA}$. (1) Since ZB = ZT = ZD, the point Z is the circumcenter of $\triangle BDT$. Therefore $\widehat{BTA} = \widehat{BZD}/2 = \widehat{EZD}$. (2) From (1) and (2) we conclude that $\widehat{EAC} \equiv \widehat{EZD}$, which gives that AEDZ is cyclic. **G2** Let AD, BF and CE be the altitudes of $\triangle ABC$. A line passing through D and parallel to AB intersects the line EF at the point G. If H is the orthocenter of $\triangle ABC$, find the angle \widehat{CGH} . #### Solution 1 We can see easily that points C, D, H, F lies on a circle of diameter [CH]. Take $\{F,G'\} = \odot(CHF) \cap EF$. We have $\widehat{EFH} = \widehat{BAD} = \widehat{BCE} = \widehat{DFH}$ since the quadrilaterals AEDC, AEHF, CDHF are cyclic. Hence [FB] is the bisector of \widehat{EFD} , so H is the midpoint of the arc DG'. It follows that $DG' \perp CH$ since [CH] is a diameter. Therefore $DG' \parallel AB$ and $G \equiv G'$. Finally G lies on the circle $\odot(CFH)$, so $\widehat{HGC} = 90^\circ$. 0.1. GEOMETRY 5 #### Solution 2 The quadrilateral AEHF is cyclic since $\widehat{AEH} = \widehat{AFH} = 90^\circ$, so $\widehat{EAD} \equiv \widehat{GFH}$. But $AB \parallel GD$, hence $\widehat{EAD} \equiv \widehat{GDH}$. Therefore $\widehat{GFH} \equiv \widehat{GDH} \Rightarrow DFGH$ is cyclic. Because the quadrilateral CDHF is cyclic since $\widehat{CDH} = \widehat{CFH} = 90^\circ$, we conclude that the quadrilateral CFGH is cyclic, which gives that $\widehat{CGH} = \widehat{CFH} = 90^\circ$. **G3** Let ABC be a triangle in which (BL) is the angle bisector of \widehat{ABC} $(L \in AC)$, AH is an altitude of $\triangle ABC$ $(H \in BC)$ and M is the midpoint of the side [AB]. It is known that the midpoints of the segments [BL] and [MH] coincides. Determine the internal angles of triangle $\triangle ABC$. ## **Solution** Let N be the intersection of the segments [BL] and [MH]. Because N is the midpoint of both segments [BL] and [MH], it follows that BMLH is a parallelogram. This implies that $ML \parallel BC$ and $LH \parallel AB$ and hence, since M is the midpoint of [AB], the angle bisector [BL] and the altitude AH are also medians of $\triangle ABC$. This shows that $\triangle ABC$ is an equilateral one with all internal angles measuring 60° . **G4** Point D lies on the side [BC] of $\triangle ABC$. The circumcenters of $\triangle ADC$ and $\triangle BAD$ are O_1 and O_2 , respectively and $O_1O_2 \parallel AB$. The orthocenter of $\triangle ADC$ is H and $AH = O_1O_2$. Find the angles of $\triangle ABC$ if 2m(< C) = 3m(< B). ### Solution 1 As AD is the radical axis of the circumcircles of $\triangle ADC$ and $\triangle BAD$, we have that $O_1O_2 \perp AD$, therefore $\widehat{DAB} = 90^\circ$. Let F be the midpoint of [CD] and [CE] be a diameter of the circumcircle of $\triangle ADC$. Then $ED \perp CD$ and $EA \perp CA$, so $ED \parallel AH$ and $EA \parallel DH$ since $AH \perp CD$ and $DH \perp AC$ (H is the orthocenter of $\triangle ADC$) and hence EAHD is a parallelogram. Therefore $O_1O_2 = AH = ED = 2O_1F$, so in $\triangle FO_1O_2$ with $\widehat{O_1FO_2} = 90^\circ$ we have $O_1O_2 = 2FO_1 \Rightarrow \widehat{ABC} = \widehat{O_1O_2F} = 30^\circ$. Then we get $\widehat{ACB} = 45^{\circ}$ and $\widehat{BAC} = 105^{\circ}$. ### Solution 2 As AD is the radical axis of the circumcircles of $\triangle ADC$ and $\triangle BAD$, we have that $O_1O_2 \perp AD$, therefore $\widehat{DAB} = 90^\circ$ and O_2 is the midpoint of [BD]. Take $\{E\} = DH \cap AC$, $\{F\} = AH \cap BC$ and $\{M\} = AD \cap O_1O_2$. We have $\widehat{CEH} = \widehat{CFH} = 90^{\circ} \Rightarrow CEFH$ is cyclic, hence $\widehat{ACD} = \widehat{AHD}$. But $\widehat{ACD} = arc \ AD/2 = \widehat{DO_1O_2}$, so $\widehat{AHD} = \widehat{DO_1O_2}$. We know that $AH = O_1O_2$. We also have $\widehat{DAH} = \widehat{O_1O_2D}$ since AO_2FM is cyclic with $\widehat{AMO_2} = \widehat{AFO_2}$. Therefore $\triangle HDA \equiv \triangle O_1DO_2 \Rightarrow DA = DO_2 = BD/2$, so in right-angled $\triangle ABD$ we have $\widehat{m(ABD)} = 30^\circ$. Then we get $\widehat{ACB} = 45^\circ$ and $\widehat{BAC} = 105^\circ$. **G5** Inside the square ABCD, the equilateral triangle $\triangle ABE$ is constructed. Let M be an interior point of the triangle $\triangle ABE$ such that $MB = \sqrt{2}$, $MC = \sqrt{6}$, $MD = \sqrt{5}$ and $ME = \sqrt{3}$. Find the area of the square ABCD. #### Solution Let K, F, H, Z be the projections of point M on the sides of the square. Then by **Pythagorean Theorem** we can prove that $MA^2 + MC^2 = MB^2 + MD^2$. From the given condition we obtain MA = 1. With center A and angle 60° , we rotate $\triangle AME$, so we construct the triangle ANB. 7 0.1. GEOMETRY Since AM = AN and $\widehat{MAN} = 60^{\circ}$, it follows that $\triangle AMN$ is equilateral and MN = 1. Hence $\triangle BMN$ is right-angled because $BM^2 + MN^2 = BN^2$. So $m(\widehat{BMA}) = m(\widehat{BMN}) + m(\widehat{AMN}) = 150^{\circ}$. Applying **Pythagorean Generalized Theorem** in $\triangle AMB$, we get: $$AB^{2} = AM^{2} + BM^{2} - 2AM \cdot BM \cdot \cos 150^{\circ} = 1 + 2 + 2\sqrt{2} \cdot \sqrt{3} : 2 = 3 + \sqrt{6}.$$ We conclude that the area of the square ABCD is $3 + \sqrt{6}$. **G6** Let ABCD be a convex quadrilateral, E and F points on the sides AB and CD, respectively, such that $\frac{AB}{AE} = \frac{CD}{DF} = n$. Denote by S the area of the quadrilateral AEFD. Prove that $S \leq \frac{\stackrel{AE}{AB} \cdot CD + n(n-1) \cdot DA^2 + n \cdot AD \cdot BC}{2n^2}$. **Solution** By **Ptolemy's Inequality** in AEFD, we get $S = \frac{AF \cdot DE \cdot \sin(AF, DE)}{2} \le \frac{AF \cdot DE}{2} \le$ $\frac{AE \cdot DF + AD \cdot EF}{2} = \frac{AB \cdot CD + n^2 \cdot DA \cdot EF}{2n^2}.$ Let G be a point on diagonal BD such that $\frac{DB}{DG} = n$. By **Thales's Theorem** we get $GE = \frac{(n-1)AD}{n}$ and $GF = \frac{BC}{n}$. Applying the inequality of triangle in $\triangle EGF$ we get $EF \le EG + GF = \frac{(n-1)AD + BC}{n}$. Now, we get: $S \le \frac{AB \cdot CD + n^2AD \cdot EF}{2n^2} \le \frac{AB \cdot CD + n(n-1) \cdot DA^2 + n \cdot AD \cdot BC}{2n^2}.$ $$S \le \frac{AB \cdot CD + n^2AD \cdot EF}{2n^2} \le \frac{\stackrel{n}{AB} \cdot CD + n(n-1) \cdot DA^2 + n \cdot AD \cdot BC}{2n^2}.$$