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0.1 Geometry

G1 Let ABC be an isosceles triangle with AB = AC. On the extension of the side
[CA] we consider the point D such that AD < AC. The perpendicular bisector of the
segment [BD] meets the internal and the external bisectors of the angle B̂AC at the
points E and Z, respectively. Prove that the points A,E,D,Z are concyclic.
Solution 1

In △ABD the ray [AZ bisects the angle D̂AB and the line ZE is the perpendicular
bisector of the side [BD]. Hence Z belongs to the circumcircle of △ABD.
Therefore the points A,B,D,Z are concyclic.
In △BCD, AE and ZE are the perpendicular bisectors [BC] and [BD], respectively.
Hence, E is the circumcenter of △BCD and therefore D̂EZ = B̂ED/2 = ÂCB.
Since BD ⊥ ZE, we conclude that: B̂DE = 90◦ − D̂EZ = 90◦ − ÂCB = B̂AE.
Hence the quadrilateral AEBD is cyclic, that is the points A,B,D,E are concyclic.
Therefore, since A,B,D,Z are also concyclic, we conclude that AEZD is cyclic.
Solution 2

In △ABD the ray [AZ bisects the angle D̂AB and the line ZE is the perpendicular
bisector of the side [BD]. Hence Z belongs to the circumcircle of △ABD.
Therefore the points A,B,D,Z are concyclic.
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Let M and N be the midpoints of the sides [BC] and [DB], respectively. Then N ∈ ZE

and M ∈ AE. Next, [MN ] is a midline in △BCD, so MN ∥ CD ⇒ N̂MB ≡ ÂCB.

But [AZ is the external bisector of the angle B̂AC of △ABC, hence B̂AZ ≡ ÂCB.

Therefore, N̂MB ≡ B̂AZ. In the quadrilateral BMEN we have B̂NE = B̂ME = 90◦,
so BMEN is cyclic ⇒ N̂MB ≡ B̂EZ, hence B̂AZ ≡ B̂EZ ⇒ AEBZ is cyclic.

Therefore, since A,B,D,Z are also concyclic, we conclude that AEZD is cyclic.

Solution 3

Let T be the symmetric of B with respect to the axis AZ. Obviously T ∈ AD. Since AE

and BT are both perpendiculars to AZ, they are parallel, so B̂AC ≡ B̂TA. (1)

Since ZB = ZT = ZD, the point Z is the circumcenter of △BDT .

Therefore B̂TA = B̂ZD/2 = ÊZD. (2)

From (1) and (2) we conclude that ÊAC ≡ ÊZD, which gives that AEDZ is cyclic.

G2 Let AD, BF and CE be the altitudes of △ABC. A line passing through D and
parallel to AB intersects the line EF at the point G. If H is the orthocenter of △ABC,
find the angle ĈGH .

Solution 1

We can see easily that points C,D,H, F lies on a circle of diameter [CH].

Take {F,G′} = ⊙(CHF ) ∩ EF . We have ÊFH = B̂AD = B̂CE = D̂FH since the
quadrilaterals AEDC, AEHF, CDHF are cyclic. Hence [FB is the bisector of ÊFD,
so H is the midpoint of the arc DG′. It follows that DG′ ⊥ CH since [CH] is a diameter.
Therefore DG′ ∥ AB and G ≡ G′. Finally G lies on the circle ⊙(CFH), so ĤGC = 90◦.
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Solution 2
The quadrilateral AEHF is cyclic since ÂEH = ÂFH = 90◦, so ÊAD ≡ ĜFH .
But AB ∥ GD, hence ÊAD ≡ ĜDH . Therefore ĜFH ≡ ĜDH ⇒ DFGH is cyclic.
Because the quadrilateral CDHF is cyclic since ĈDH = ĈFH = 90◦, we conclude that
the quadrilateral CFGH is cyclic, which gives that ĈGH = ĈFH = 90◦.

G3 Let ABC be a triangle in which (BL is the angle bisector of ÂBC (L ∈ AC), AH is
an altitude of △ABC (H ∈ BC) and M is the midpoint of the side [AB]. It is known
that the midpoints of the segments [BL] and [MH] coincides. Determine the internal
angles of triangle △ABC.
Solution
Let N be the intersection of the segments [BL] and [MH]. Because N is the midpoint of
both segments [BL] and [MH], it follows that BMLH is a parallelogram. This implies
that ML ∥ BC and LH ∥ AB and hence, since M is the midpoint of [AB], the angle
bisector [BL and the altitude AH are also medians of △ABC. This shows that △ABC

is an equilateral one with all internal angles measuring 60◦.

G4 Point D lies on the side [BC] of △ABC. The circumcenters of △ADC and △BAD

are O1 and O2, respectively and O1O2 ∥ AB. The orthocenter of △ADC is H and
AH = O1O2. Find the angles of △ABC if 2m(< C) = 3m(< B).
Solution 1
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As AD is the radical axis of the circumcircles of △ADC and △BAD, we have that
O1O2 ⊥ AD, therefore D̂AB = 90◦. Let F be the midpoint of [CD] and [CE] be a
diameter of the circumcircle of △ADC. Then ED ⊥ CD and EA ⊥ CA, so ED ∥ AH

and EA ∥ DH since AH ⊥ CD and DH ⊥ AC (H is the orthocenter of △ADC) and
hence EAHD is a parallelogram. Therefore O1O2 = AH = ED = 2O1F , so in △FO1O2

with Ô1FO2 = 90◦ we have O1O2 = 2FO1 ⇒ ÂBC = Ô1O2F = 30◦.

Then we get ÂCB = 45◦ and B̂AC = 105◦.

Solution 2

As AD is the radical axis of the circumcircles of △ADC and △BAD, we have that
O1O2 ⊥ AD, therefore D̂AB = 90◦ and O2 is the midpoint of [BD].

Take {E} = DH ∩ AC, {F} = AH ∩BC and {M} = AD ∩O1O2.

We have ĈEH = ĈFH = 90◦ ⇒ CEFH is cyclic, hence ÂCD = ÂHD.

But ÂCD = arc AD/2 = D̂O1O2, so ÂHD = D̂O1O2. We know that AH = O1O2.

We also have D̂AH = Ô1O2D since AO2FM is cyclic with ÂMO2 = ÂFO2.

Therefore △HDA ≡ △O1DO2 ⇒ DA = DO2 = BD/2, so in right-angled △ABD we
have m(ÂBD) = 30◦. Then we get ÂCB = 45◦ and B̂AC = 105◦.

G5 Inside the square ABCD, the equilateral triangle △ABE is constructed. Let M be
an interior point of the triangle △ABE such that MB =

√
2, MC =

√
6, MD =

√
5

and ME =
√
3. Find the area of the square ABCD.

Solution

Let K,F,H,Z be the projections of point M on the sides of the square.

Then by Pythagorean Theorem we can prove that MA2 +MC2 = MB2 +MD2.

From the given condition we obtain MA = 1.

With center A and angle 60◦, we rotate △AME, so we construct the triangle ANB.
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Since AM = AN and M̂AN = 60◦, it follows that △AMN is equilateral and MN = 1.
Hence △BMN is right-angled because BM2 +MN2 = BN2.
So m(B̂MA) = m(B̂MN) +m(ÂMN) = 150◦.
Applying Pythagorean Generalized Theorem in △AMB, we get:
AB2 = AM2 +BM2 − 2AM ·BM · cos 150◦ = 1 + 2 + 2

√
2 ·

√
3 : 2 = 3 +

√
6.

We conclude that the area of the square ABCD is 3 +
√
6.

G6 Let ABCD be a convex quadrilateral, E and F points on the sides AB and CD,

respectively, such that
AB

AE
=

CD

DF
= n. Denote by S the area of the quadrilateral

AEFD. Prove that S ≤ AB · CD + n(n− 1) ·DA2 + n · AD ·BC

2n2
.

Solution

By Ptolemy’s Inequality in AEFD, we get S =
AF ·DE · sin(ÂF,DE)

2
≤ AF ·DE

2
≤

AE ·DF + AD · EF

2
=

AB · CD + n2 ·DA · EF

2n2
.

Let G be a point on diagonal BD such that
DB

DG
= n. By Thales’s Theorem we get

GE =
(n− 1)AD

n
and GF =

BC

n
. Applying the inequality of triangle in △EGF we

get EF ≤ EG+GF =
(n− 1)AD +BC

n
. Now, we get:

S ≤ AB · CD + n2AD · EF

2n2
≤ AB · CD + n(n− 1) ·DA2 + n · AD ·BC

2n2
.


