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Problem 1. Let S = x1x2 + x3x4 + . . . + x2015x2016, where x1, x2, . . . , x2016 ∈
{
√
3−
√
2,
√
3 +
√
2}. Is the equality S = 2016 possible ?

Cristian Laz«r

Solution: The answer is in the affirmative.
The terms of the sum can be: (

√
3 −
√
2)(
√
3 +
√
2) = 1, (

√
3 +
√
2)2 = 5 + 2

√
6

or (
√
3 −
√
2)2 = 5 − 2

√
6. If there are a terms equal to 1, b terms equal to

5 + 2
√
6 and c terms equal to 5 − 2

√
6, then a, b, c need to satisfy a + b + c =

1008, a + (5 + 2
√
6)b + (5 − 2

√
6)c = 2016. The last equality can be written

a + 5b + 5c − 2016 =
√
6(2c − 2b). As

√
6 is irrational, it follows that b = c and

a+ 5b+ 5c = 2016. Finally we obtain a = 756, b = c = 126.

Problem 2. Determine the positive integers n > 1 such that, for any divisor d of
n, the numbers d2 − d+ 1 and d2 + d+ 1 are prime.

Lucian Petrescu

Solution: The answer is: n ∈ {2, 3, 6}.
First, we prove that n is square-free. If d2 divides n for a positive integer d > 1,
then (d2)2+d2+1 would be a prime number. But d4+d2+1 = (d2−d+1)(d2+d+1),
with both factors larger than 1, which is a contradiction.
Thus, n = p1 · p2 · . . . · ps, where s ∈ N and p1 < p2 < . . . < ps are prime numbers.
Let p > 5 be a prime number. Then p ≡ 1 (mod 6) or p ≡ 5 (mod 6). If p ≡ 1
(mod 6), then p2 + p+ 1 ≡ 3 (mod 6), and p2 + p+ 1 > 3 is composite.
If p ≡ 5 (mod 6), then p2 − p+ 1 ≡ 3 (mod 6), and p2 − p+ 1 > 3 is composite.
In conclusion, the only prime factors of n can be 2 and 3, so n ∈ {2, 3, 6}. It is
easy to check that all these three numbers fulfill the given condition.

Problem 3. Let ABC be a triangle with AB < AC, I its incenter, and M the
midpoint of the side BC. If IA = IM , determine the smallest possible value of the
angle AIM .
Solution: Answer: 150◦.
Let {D} = AI∩BC. As AB < AC,D lies between B andM and ∠ACB < ∠ABC.
We have ∠IDB = ∠DAC+∠ACB < ∠DAB+∠ABD = ∠ADC, therefore angle
IDB is acute.
Let F and E be the projections of I onto AB and BC, respectively. It follows that
E ∈ (BD) ⊂ BM . Triangles IBF and IBE are congruent and so are triangles

IFA and IEM , therefore BA = BM =
BC

2
and triangles IBA and IBM are

congruent.
We have: ∠MID = ∠IDB − ∠IMB = ∠DAC + ∠ACD − ∠IAB = ∠ACD. It
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follows that ∠AIM = 180◦ − ∠ACB (1).

Let H be the projection of B onto the line AC. It follows that BH ≤ AB =
BC

2
,

which shows that ∠ACB ≤ 30◦ (2).
From (1) and (2) we obtain that ∠AIM ≥ 180◦ − 30◦ = 150◦.

Problem 4. A unit square is removed from the corner of the n×n grid where n ≥ 2.
Prove that the remainder can be covered by copies of the �L-shapes" consisting of
3 or 5 unit squares depicted in the figure. Every square must be covered once and
the L-shapes must not go over the bounds of the grid.

Estonian Olympiad, 2009

Solution: Without loss of generality, we may assume that the unit square that
has been removed is the one in the top left corner. We call such a grid an n-grid.
We prove the assertion by an induction of step 6. The examples below show that
an n-grid with n ∈ {2, 3, 4, 5, 6, 7} can be covered with L-shapes.
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It is easy to see that we can glue together two L-shapes consisting of 3 unit squares
in order to obtain a 2 × 3 or a 3 × 2 rectangle. From several such rectangles we
can form 2 × 6 and 3 × 6 rectangles. Combining these, we can obtain any m × 6
rectangle with m > 1. Now to the induction step. If an n-grid can be covered, so
can an (n+ 6)-grid. Indeed, decompose the (n+ 6)-grid into an n-grid positioned
in its upper left corner, an (n + 6) × 6 rectangle consisting of the last 6 columns,
and the remaining part, a 6 × n rectangle. Each of these pieces can be covered,
therefore so can the (n+ 6)-grid. Our induction is thus complete.
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