The Mathematical Danube Competition
 Călăraşi, October 29, 2016

Problem 1. Let $S=x_{1} x_{2}+x_{3} x_{4}+\ldots+x_{2015} x_{2016}$, where $x_{1}, x_{2}, \ldots, x_{2016} \in$ $\{\sqrt{3}-\sqrt{2}, \sqrt{3}+\sqrt{2}\}$. Is the equality $S=2016$ possible?

Cristian Lazăr
Solution: The answer is in the affirmative.
The terms of the sum can be: $(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})=1,(\sqrt{3}+\sqrt{2})^{2}=5+2 \sqrt{6}$ or $(\sqrt{3}-\sqrt{2})^{2}=5-2 \sqrt{6}$. If there are a terms equal to $1, b$ terms equal to $5+2 \sqrt{6}$ and c terms equal to $5-2 \sqrt{6}$, then a, b, c need to satisfy $a+b+c=$ 1008, $a+(5+2 \sqrt{6}) b+(5-2 \sqrt{6}) c=2016$. The last equality can be written $a+5 b+5 c-2016=\sqrt{6}(2 c-2 b)$. As $\sqrt{6}$ is irrational, it follows that $b=c$ and $a+5 b+5 c=2016$. Finally we obtain $a=756, b=c=126$.

Problem 2. Determine the positive integers $n>1$ such that, for any divisor d of n, the numbers $d^{2}-d+1$ and $d^{2}+d+1$ are prime.

Lucian Petrescu

Solution: The answer is: $n \in\{2,3,6\}$.
First, we prove that n is square-free. If d^{2} divides n for a positive integer $d>1$, then $\left(d^{2}\right)^{2}+d^{2}+1$ would be a prime number. But $d^{4}+d^{2}+1=\left(d^{2}-d+1\right)\left(d^{2}+d+1\right)$, with both factors larger than 1 , which is a contradiction.
Thus, $n=p_{1} \cdot p_{2} \cdot \ldots \cdot p_{s}$, where $s \in \mathbb{N}$ and $p_{1}<p_{2}<\ldots<p_{s}$ are prime numbers. Let $p>5$ be a prime number. Then $p \equiv 1(\bmod 6)$ or $p \equiv 5(\bmod 6)$. If $p \equiv 1$ $(\bmod 6)$, then $p^{2}+p+1 \equiv 3(\bmod 6)$, and $p^{2}+p+1>3$ is composite.
If $p \equiv 5(\bmod 6)$, then $p^{2}-p+1 \equiv 3(\bmod 6)$, and $p^{2}-p+1>3$ is composite. In conclusion, the only prime factors of n can be 2 and 3 , so $n \in\{2,3,6\}$. It is easy to check that all these three numbers fulfill the given condition.

Problem 3. Let $A B C$ be a triangle with $A B<A C, I$ its incenter, and M the midpoint of the side $B C$. If $I A=I M$, determine the smallest possible value of the angle $A I M$.
Solution: Answer: 150°.
Let $\{D\}=A I \cap B C$. As $A B<A C, D$ lies between B and M and $\angle A C B<\angle A B C$.
We have $\angle I D B=\angle D A C+\angle A C B<\angle D A B+\angle A B D=\angle A D C$, therefore angle $I D B$ is acute.
Let F and E be the projections of I onto $A B$ and $B C$, respectively. It follows that $E \in(B D) \subset B M$. Triangles $I B F$ and $I B E$ are congruent and so are triangles $I F A$ and $I E M$, therefore $B A=B M=\frac{B C}{2}$ and triangles $I B A$ and $I B M$ are congruent.
We have: $\angle M I D=\angle I D B-\angle I M B=\angle D A C+\angle A C D-\angle I A B=\angle A C D$. It
follows that $\angle A I M=180^{\circ}-\angle A C B$
Let H be the projection of B onto the line $A C$. It follows that $B H \leq A B=\frac{B C}{2}$, which shows that $\angle A C B \leq 30^{\circ}$
From (1) and (2) we obtain that $\angle A I M \geq 180^{\circ}-30^{\circ}=150^{\circ}$.

Problem 4. A unit square is removed from the corner of the $n \times n$ grid where $n \geq 2$. Prove that the remainder can be covered by copies of the „L-shapes" consisting of 3 or 5 unit squares depicted in the figure. Every square must be covered once and the L-shapes must not go over the bounds of the grid.

Estonian Olympiad, 2009
Solution: Without loss of generality, we may assume that the unit square that has been removed is the one in the top left corner. We call such a grid an n-grid. We prove the assertion by an induction of step 6 . The examples below show that an n-grid with $n \in\{2,3,4,5,6,7\}$ can be covered with L-shapes.

It is easy to see that we can glue together two L-shapes consisting of 3 unit squares in order to obtain a 2×3 or a 3×2 rectangle. From several such rectangles we can form 2×6 and 3×6 rectangles. Combining these, we can obtain any $m \times 6$ rectangle with $m>1$. Now to the induction step. If an n-grid can be covered, so can an $(n+6)$-grid. Indeed, decompose the $(n+6)$-grid into an n-grid positioned in its upper left corner, an $(n+6) \times 6$ rectangle consisting of the last 6 columns, and the remaining part, a $6 \times n$ rectangle. Each of these pieces can be covered, therefore so can the $(n+6)$-grid. Our induction is thus complete.

