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Circles

Construct a circle of radius zero. . .

Although it is often an intermediate step, angle chasing is usually not enough to solve a
problem completely. In this chapter, we develop some other fundamental tools involving
circles.

2.1 Orientations of Similar Triangles
You probably already know the similarity criterion for triangles. Similar triangles are useful
because they let us convert angle information into lengths. This leads to the power of a
point theorem, arguably the most common sets of similar triangles.

In preparation for the upcoming section, we develop the notion of similar triangles that
are similarly oriented and oppositely oriented.

Here is how it works. Consider triangles ABC and XYZ. We say they are directly
similar, or similar and similarly oriented, if

�ABC = �XYZ, �BCA = �YZX, and �CAB = �ZXY.

We say they are oppositely similar, or similar and oppositely oriented, if

�ABC = −�XYZ, �BCA = −�YZX, and �CAB = −�ZXY.

If they are either directly similar or oppositely similar, then they are similar. We write
�ABC ∼ �XYZ in this case. See Figure 2.1A for an illustration.

Two of the angle equalities imply the third, so this is essentially directed AA. Remember
to pay attention to the order of the points.

T1
T2 T3

Figure 2.1A. T1 is directly similar to T2 and oppositely to T3.
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The upshot of this is that we may continue to use directed angles when proving triangles
are similar; we just need to be a little more careful. In any case, as you probably already
know, similar triangles also produce ratios of lengths.

Proposition 2.1 (Similar Triangles). The following are equivalent for triangles ABC

and XYZ.

(i) �ABC ∼ �XYZ.
(ii) (AA) ∠A = ∠X and ∠B = ∠Y .

(iii) (SAS) ∠B = ∠Y , and AB : XY = BC : YZ.
(iv) (SSS) AB : XY = BC : YZ = CA : ZX.

Thus, lengths (particularly their ratios) can induce similar triangles and vice versa. It is
important to notice that SAS similarity does not have a directed form; see Problem 2.2. In
the context of angle chasing, we are interested in showing that two triangles are similar using
directed AA, and then using the resulting length information to finish the problem. The
power of a point theorem in the next section is perhaps the greatest demonstration. However,
we remind the reader that angle chasing is only a small part of olympiad geometry, and not
to overuse it.

Problem for this Section

Problem 2.2. Find an example of two triangles ABC and XYZ such that AB : XY =
BC : YZ, �BCA = �YZX, but �ABC and �XYZ are not similar.

2.2 Power of a Point
Cyclic quadrilaterals have many equal angles, so it should come as no surprise that we
should be able to find some similar triangles. Let us see what length relations we can
deduce.

Consider four points A, B, X, Y lying on a circle. Let line AB and line XY intersect at
P . See Figure 2.2A.

A

B

X
Y

P

A

B

X

Y

P

Figure 2.2A. Configurations in power of a point.

A simple directed angle chase gives that

�PAY = �BAY = �BXY = �BXP = −�PXB
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and

�AYP = �AYX = �ABX = �PBX = −�XBP.

As a result, we deduce that �PAY is oppositely similar to �PXB.
Therefore, we derive

PA

PY
= PX

PB

or

PA · PB = PX · PY.

This is the heart of the theorem. Another way to think of this is that the quantity
PA · PB does not depend on the choice of line AB, but instead only on the point P . In
particular, if we choose line AB to pass through the center of the circle, we obtain that
PA · PB = |PO − r||PO + r| where O and r are the center and radius of ω, respectively.
In light of this, we define the power of P with respect to the circle ω by

Powω(P ) = OP 2 − r2.

This quantity may be negative. Actually, the sign allows us to detect whether P lies inside
the circle or not. With this definition we obtain the following properties.

Theorem 2.3 (Power of a Point). Consider a circle ω and an arbitrary point P .

(a) The quantity Powω(P ) is positive, zero, or negative according to whether P is outside,
on, or inside ω, respectively.

(b) If 	 is a line through P intersecting ω at two distinct points X and Y , then

PX · PY = |Powω(P )| .
(c) If P is outside ω and PA is a tangent to ω at a point A on ω, then

PA2 = Powω(P ).

Perhaps even more important is the converse of the power of a point, which allows us
to find cyclic quadrilaterals based on length. Here it is.

Theorem 2.4 (Converse of the Power of a Point). Let A, B, X, Y be four distinct points
in the plane and let lines AB and XY intersect at P . Suppose that either P lies in both of
the segments AB and XY , or in neither segment. If PA · PB = PX · PY , then A, B, X,
Y are concyclic.

Proof. The proof is by phantom points (see Example 1.32, say). Let line XP meet
(ABX) at Y ′. Then A, B, X, Y ′ are concyclic. Therefore, by power of a point, PA · PB =
PX · PY ′. Yet we are given PA · PB = PX · PY . This implies PY = PY ′.

We are not quite done! We would like that Y = Y ′, but PY = PY ′ is not quite enough.
See Figure 2.2B. It is possible that Y and Y ′ are reflections across point P .

Fortunately, the final condition now comes in. Assume for the sake of contradiction that
Y �= Y ′; then Y and Y ′ are reflections across P . The fact that A, B, X, Y ′ are concyclic
implies that P lies in both or neither of AB and XY ′. Either way, this changes if we consider
AB and XY . This violates the second hypothesis of the theorem, contradiction.
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A

B

X
Y ′P

Y

Figure 2.2B. It’s a trap! PA · PB = PX · PY almost implies concyclic, but not quite.

As you might guess, the above theorem often provides a bridge between angle chasing
and lengths. In fact, it can appear in even more unexpected ways. See the next section.

Problems for this Section

Problem 2.5. Prove Theorem 2.3.

Problem 2.6. Let ABC be a right triangle with ∠ACB = 90◦. Give a proof of the
Pythagorean theorem using Figure 2.2C. (Make sure to avoid a circular proof.)

B

C
A

a

b

Figure 2.2C. A proof of the Pythagorean theorem.

2.3 The Radical Axis and Radical Center
We start this section with a teaser.

Example 2.7. Three circles intersect as in Figure 2.3A. Prove that the common chords
are concurrent.

This seems totally beyond the reach of angle chasing, and indeed it is. The key to
unlocking this is the radical axis.

Given two circles ω1 and ω2 with distinct centers, the radical axis of the circles is the
set of points P such that

Powω1 (P ) = Powω2 (P ).

At first, this seems completely arbitrary. What could possibly be interesting about having
equal power to two circles? Surprisingly, the situation is almost the opposite.
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Figure 2.3A. The common chords are concurrent.

Theorem 2.8 (Radical Axis). Let ω1 and ω2 be circles with distinct centers O1 and O2.
The radical axis of ω1 and ω2 is a straight line perpendicular to O1O2.

In particular, if ω1 and ω2 intersect at two points A and B, then the radical axis is line
AB.

An illustration is in Figure 2.3B.

O1 O2

A

B

O1 O2

O1 O2 O1 O2

Figure 2.3B. Radical axes on display.

Proof. This is one of the nicer applications of Cartesian coordinates—we are motivated
to do so by the squares of lengths appearing, and the perpendicularity of the lines. Suppose
that O1 = (a, 0) and O2 = (b, 0) in the coordinate plane and the circles have radii r1 and
r2 respectively. Then for any point P = (x, y) we have

Powω1 (P ) = O1P
2 − r2

1 = (x − a)2 + y2 − r2
1 .
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Similarly,

Powω2 (P ) = O2P
2 − r2

2 = (x − b)2 + y2 − r2
2 .

Equating the two, we find the radical axis of ω1 and ω2 is the set of points P = (x, y)
satisfying

0 = Powω1 (P ) − Powω2 (P )

= [
(x − a)2 + y2 − r2

1

] − [
(x − b)2 + y2 − r2

2

]
= (−2a + 2b)x + (

a2 − b2 + r2
2 − r2

1

)
which is a straight line perpendicular to the x-axis (as −2a + 2b �= 0). This implies the
result.

The second part is an immediately corollary. The points A and B have equal power
(namely zero) to both circles; therefore, both A and B lie on the radical axis. Consequently,
the radical axis must be the line AB itself.

As a side remark, you might have realized in the proof that the standard equation of
a circle (x − m)2 + (y − n)2 − r2 = 0 is actually just the expansion of Powω((x, y)) = 0.
That is, the expression (x − m)2 + (y − n)2 − r2 actually yields the power of the point
(x, y) in Cartesian coordinates to the circle centered at (m, n) with radius r .

The power of Theorem 2.8 (no pun intended) is the fact that it is essentially an “if and
only if” statement. That is, a point has equal power to both circles if and only if it lies on
the radical axis, which we know much about.

Let us now return to the problem we saw at the beginning of this section. Some of you
may already be able to guess the ending.

Proof of Example 2.7. The common chords are radical axes. Let 	12 be the radical axis
of ω1 and ω2, and let 	23 be the radical axis of ω2 and ω3.

Let P be the intersection of these two lines. Then

P ∈ 	12 ⇒ Powω1 (P ) = Powω2 (P )

and

P ∈ 	23 ⇒ Powω2 (P ) = Powω3 (P )

which implies Powω1 (P ) = Powω3 (P ). Hence P ∈ 	31 and accordingly we discover that all
three lines pass through P .

In general, consider three circles with distinct centers O1, O2, O3. In light of the
discussion above, there are two possibilities.

1. Usually, the pairwise radical axes concur at a single point K . In that case, we call K the
radical center of the three circles.

2. Occasionally, the three radical axes will be pairwise parallel (or even the same line).
Because the radical axis of two circles is perpendicular to the line joining its centers,
this (annoying) case can only occur if O1, O2, O3 are collinear.
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It is easy to see that these are the only possibilities; whenever two radical axes intersect,
then the third one must pass through their intersection point.

We should also recognize that the converse to Example 2.7 is also true. Here is the full
configuration.

Theorem 2.9 (Radical Center of Intersecting Circles). Let ω1 and ω2 be two circles
with centers O1 and O2. Select points A and B on ω1 and points C and D on ω2. Then the
following are equivalent:

(a) A, B, C, D lie on a circle with center O3 not on line O1O2.
(b) Lines AB and CD intersect on the radical axis of ω1 and ω2.

P

A

B

C

D

Figure 2.3C. The converse is also true. See Theorem 2.9.

Proof. We have already shown one direction. Now suppose lines AB and CD intersect
at P , and that P lies on the radical axis. Then

±PA · PB = Powω1 (P ) = Powω2 (P ) = ±PC · PD.

We need one final remark: we see that Powω1 (P ) > 0 if and only if P lies strictly between
A and B. Similarly, Powω2 (P ) > 0 if and only if P lies strictly between C and D. Because
Powω1 (P ) = Powω2 (P ), we have the good case of Theorem 2.4. Hence, because PA · PB =
PC · PD, we conclude that A, B, C, D are concyclic. Because lines AB and CD are not
parallel, it must also be the case that the points O1, O2, O3 are not collinear.

We have been very careful in our examples above to check that the power of a point
holds in the right direction, and to treat the two cases “concurrent” or “all parallel”. In
practice, this is more rarely an issue, because the specific configuration in an olympiad
problem often excludes such pathological configurations. Perhaps one notable exception is
USAMO 2009/1 (Example 2.21).
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To conclude this section, here is one interesting application of the radical axis that is
too surprising to be excluded.

Proposition 2.10. In a triangle ABC, the circumcenter exists. That is, there is a point O

such that OA = OB = OC.

Proof. Construct a circle of radius zero (!) centered at A, and denote it by ωA. Define
ωB and ωC similarly. Because the centers are not collinear, we can find their radical center
O.

Now we know the powers from O to each of ωA, ωB , ωC are equal. Rephrased, the
(squared) length of the “tangents” to each circle are equal: that is, OA2 = OB2 = OC2.
(To see that OA2 really is the power, just use PowωA

(O) = OA2 − 02 = OA2.) From here
we derive that OA = OB = OC, as required.

Of course, the radical axes are actually just the perpendicular bisectors of the sides. But
this presentation was simply too surprising to forgo. This may be the first time you have
seen a circle of radius zero; it will not be the last.

Problems for this Section

Lemma 2.11. Let ABC be a triangle and consider a point P in its interior. Suppose that
BC is tangent to the circumcircles of triangles ABP and ACP . Prove that ray AP bisects
BC.

A

B C

P

Figure 2.3D. Diagram for Lemma 2.11.

Problem 2.12. Show that the orthocenter of a triangle exists using radical axes. That is, if
AD, BE, and CF are altitudes of a triangle ABC, show that the altitudes are concurrent.
Hint: 367

2.4 Coaxial Circles
If a set of circles have the same radical axes, then we say they are coaxial. A collection
of such circles is called a pencil of coaxial circles. In particular, if circles are coaxal, their
centers are collinear. (The converse is not true.)

Coaxial circles can arise naturally in the following way.
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Figure 2.4A. Two pencils of coaxial circles.

Lemma 2.13 (Finding Coaxial Circles). Three distinct circles �1, �2, �3 pass through
a point X. Then their centers are collinear if and only if they share a second common point.

Proof. Both conditions are equivalent to being coaxial.

2.5 Revisiting Tangents: The Incenter
We consider again an angle bisector. See Figure 2.5A.

For any point P on the angle bisector, the distances from P to the sides are equal.
Consequently, we can draw a circle centered at P tangent to the two sides. Conversely, the
two tangents to any circle always have equal length, and the center of that circle lies on the
corresponding angle bisector.

A

B C

P

Figure 2.5A. Two tangents to a circle.

From these remarks we can better understand the incenter.

Proposition 2.14. In any triangle ABC, the angle bisectors concur at a point I , which is
the center of a circle inscribed in the triangle.

Proof. Essentially we are going to complete Figure 2.5A to obtain Figure 2.5B. Let the
angle bisectors of ∠B and ∠C intersect at a point I . We claim that I is the desired incenter.

Let D, E, F be the projections of I onto BC, CA, and AB, respectively. Because I is
on the angle bisector of ∠B, we know that IF = ID. Because I is on the angle bisector
of ∠C, we know that ID = IE. (If this reminds you of the proof of the radical center, it
should!) Therefore, IE = IF , and we deduce that I is also on the angle bisector of ∠A.
Finally, the circle centered at I with radius ID = IE = IF is evidently tangent to all
sides.
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A

B CD
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F I

x
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y z

z

x

Figure 2.5B. Describing the incircle of a triangle.

The triangle DEF is called the contact triangle of �ABC.
We can say even more. In Figure 2.5B we have marked the equal lengths induced by the

tangents as x, y, and z. Considering each of the sides, this gives us a system of equations
of three variables

y + z = a

z + x = b

x + y = c.

Now we can solve for x, y, and z in terms of a, b, c. This is left as an exercise, but we state
the result here. (Here s = 1

2 (a + b + c).)

Lemma 2.15 (Tangents to the Incircle). If DEF is the contact triangle of �ABC, then
AE = AF = s − a. Similarly, BF = BD = s − b and CD = CE = s − c.

Problem for this Section

Problem 2.16. Prove Lemma 2.15.

2.6 The Excircles
In Lemma 1.18 we briefly alluded the excenter of a triangle. Let us consider it more
completely here. The A-excircle of a triangle ABC is the circle that is tangent to BC,
the extension of AB past B, and the extension of AC past C. See Figure 2.6A. The
A-excenter, usually denoted IA, is the center of the A-excircle. The B-excircle and C-
excircles are defined similarly and their centers are unsurprisingly called the B-excenter
and the C-excenter.

We have to actually check that the A-excircle exists, as it is not entirely obvious from
the definition. The proof is exactly analogous to that for the incenter, except with the angle
bisector from B replaced with an external angle bisector, and similarly for C. As a simple
corollary, the incenter of ABC lies on AIA.

Now let us see if we can find similar length relations as in the incircle. Let X be the
tangency point of the A-excircle on BC and B1 and C1 the tangency points to rays AB and
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X

IA
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C1

Figure 2.6A. The incircle and A-excircle.

AC. We know that AB1 = AC1 and that

AB1 + AC1 = (AB + BB1) + (AC + CC1)

= (AB + BX) + (AC + CX)

= AB + AC + BC

= 2s.

We have now obtained the following.

Lemma 2.17 (Tangents to the Excircle). If AB1 and AC1 are the tangents to the A-
excircle, then AB1 = AC1 = s.

Let us make one last remark: in Figure 2.6A, the triangles AIF and AIAB1 are directly
similar. (Why?) This lets us relate the A-exradius, or the radius of the excircle, to the other
lengths in the triangle. This exradius is usually denoted ra . See Lemma 2.19.

Problems for this Section

Problem 2.18. Let the external angle bisectors of B and C in a triangle ABC intersect at
IA. Show that IA is the center of a circle tangent to BC, the extension of AB through B,
and the extension of AC through C. Furthermore, show that IA lies on ray AI .

Lemma 2.19 (Length of Exradius). Prove that the A-exradius has length

ra = s

s − a
r.

Hint: 302

Lemma 2.20. Let ABC be a triangle. Suppose its incircle and A-excircle are tangent to
BC at X and D, respectively. Show that BX = CD and BD = CX.
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2.7 Example Problems
We finish this chapter with several problems, which we feel are either instructive, classical,
or too surprising to not be shared.

Example 2.21 (USAMO 2009/1). Given circles ω1 and ω2 intersecting at points X and
Y , let 	1 be a line through the center of ω1 intersecting ω2 at points P and Q and let 	2 be a
line through the center of ω2 intersecting ω1 at points R and S. Prove that if P , Q, R, and
S lie on a circle then the center of this circle lies on line XY .

O1 O2

X

Y

O3

P

Q

R

S

Figure 2.7A. The first problem of the 2009 USAMO.

This was actually a very nasty USAMO problem, in the sense that it was easy to lose
partial credit. We will see why.

Let O3 and ω3 be the circumcenter and circumcircle, respectively, of the cyclic quadri-
lateral PQRS. After drawing the diagram, we are immediately reminded of our radical
axes. In fact, we already know that that lines PQ, RS, and XY concur at a point X, by
Theorem 2.9. Call this point H .

Now, what else do we know? Well, glancing at the diagram∗ it appears that O1O3 ⊥ RS.
And of course this we know is true, because RS is the radical axis of ω1 an ω3. Similarly,
we notice that PQ is perpendicular to O1O3.

Focus on �O1O2O3. We see that H is its orthocenter. Therefore the altitude from O3

to O1O2 must pass through H . But line XY is precisely that altitude: it passes through H

and is perpendicular to O1O2. Hence, O3 lies on line XY , and we are done.
Or are we?
Look at Theorem 2.9 again. In order to apply it, we need to know that O1, O2, O3 are

not collinear. Unfortunately, this is not always true—see Figure 2.7B.
Fortunately, noticing this case is much harder than actually doing it. We use phantom

points. Let O be the midpoint of XY . (We pick this point because we know this is where O3

∗ And you are drawing large scaled diagrams, right?



2.7. Example Problems 35

O1 O2

X

Y

O

P

Q

R

S

Figure 2.7B. An unnoticed special case.

must be for the problem to hold.) Now we just need to show that OP = OQ = OR = OS,
from which it will follow that O = O3.

This looks much easier. It should seem like we should be able to compute everything
using just repeated applications of the Pythagorean theorem (and the definition of a circle).
Trying this,

OP 2 = OO2
1 + O1P

2

= OO2
1 + (O2P

2 − O1O
2
2 )

= OO2
1 + r2

2 − O1O
2
2 .

Now the point P is gone from the expression, but the r2 needs to go if we hope to get a

symmetric expression. We can get rid of it by using O2X = r2 =
√

XO2 + OO2
2 .

OP 2 = OO2
1 + (O2X

2 + OX2) − O1O
2
2

= OX2 + OO2
1 + OO2

2 − O1O
2
2

=
(

1

2
XY

)2

+ OO2
1 + OO2

2 − O1O
2
2 .

This is symmetric; the exact same calculations with Q, R, and S yield the same results. We
conclude OP 2 = OQ2 = OR2 = OS2 = (

1
2XY

)2 + OO2
1 + OO2

2 − O1O
2
2 as desired.

Having presented the perhaps more natural solution above, here is a solution with a
more analytic flavor. It carefully avoids the configuration issues in the first solution.

Solution to Example 2.21. Let r1, r2, r3 denote the circumradii of ω1, ω2, and ω3,
respectively.
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We wish to show that O3 lies on the radical axis of ω1 and ω2. Let us encode the
conditions using power of a point. Because O1 is on the radical axis of ω2 and ω3,

Powω2 (O1) = Powω3 (O1)

⇒ O1O
2
2 − r2

2 = O1O
2
3 − r2

3 .

Similarly, because O2 is on the radical axis of ω1 and ω3, we have

Powω1 (O2) = Powω3 (O2)

⇒ O1O
2
2 − r2

1 = O2O
2
3 − r2

3 .

Subtracting the two gives

(O1O
2
2 − r2

2 ) − (O1O
2
2 − r2

1 ) = (O1O
2
3 − r2

3 ) − (O2O
2
3 − r2

3 )

⇒ r2
1 − r2

2 = O1O
2
3 − O2O

2
3

⇒ O2O
2
3 − r2

2 = O1O
2
3 − r2

1

⇒ Powω2 (O3) = Powω1 (O3)

as desired.

The main idea of this solution is to encode everything in terms of lengths using the
radical axis. Effectively, we write down the givens as equations. We also write the desired
conclusion as an equation, namely Powω2 (O3) = Powω1 (O3), then forget about geometry
and do algebra. It is an unfortunate irony of olympiad geometry that analytic solutions are
often immune to configuration issues that would otherwise plague traditional solutions.

The next example is a classical result of Euler.

Lemma 2.22 (Euler’s Theorem). Let ABC be a triangle. Let R and r denote its circum-
radius and inradius, respectively. Let O and I denote its circumcenter and incenter. Then
OI 2 = R(R − 2r). In particular, R ≥ 2r .

The first thing we notice is that the relation is equivalent to proving R2 − OI 2 = 2Rr .
This is power of a point, clear as day. So, we let ray AI hit the circumcircle again at L.
Evidently we just need to show

AI · IL = 2Rr.

This looks much nicer to work with—noticing the power expressions gave us a way to
clean up the problem statement, and gives us some structure to work on.

We work backwards for a little bit. The final condition appears like similar triangles.
So perhaps we may rewrite it as

AI

r
= 2R

IL
.

There are not too many ways the left-hand side can show up like that. We drop the altitude
from I to AB as F . Then �AIF has the ratios that we want. (You can also drop the foot to
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A

B C

L

K

I
F

O

Figure 2.7C. Proving Euler’s theorem.

AC, but this is the same thing.) All that remains is to construct a similar triangle with the
lengths 2R and IL. Unfortunately, IL does not play well in this diagram.

But we hope that by now you recognize IL from Lemma 1.18! Write BL = IL. Then
let K be the point such that KL is a diameter of the circle. Then �KBL has the dimensions
we want. Could the triangles in question be similar? Yes: ∠KBL and ∠AFI are both right
angles, and∠BAL = ∠BKL by cyclic quadrilaterals. Hence this produces AI · IL = 2Rr

and we are done.
As usual, this is not how a solution should be written up in a contest. Solutions should

be only written forwards, and without explaining where the steps come from.

Solution to Lemma 2.22. Let ray AI meet the circumcircle again at L and let K be
the point diametrically opposite L. Let F be the foot from I to AB. Notice that ∠FAI =
∠BAL = ∠BKL and ∠AFI = ∠KBL = 90◦, so

AI

r
= AI

IF
= KL

LB
= 2R

LI

and hence AI · IL = 2Rr . Because I lies inside �ABC, we deduce the power of I with
respect to (ABC) is 2Rr = R2 − OI 2. Consequently, OI 2 = R(R − 2r).

The construction of the diameter appears again in Chapter 3, when we derive the
extended law of sines, Theorem 3.1.

Our last example is from the All-Russian Mathematical Olympiad, whose solution is
totally unexpected. Please ponder it before reading the solution.

Example 2.23 (Russian Olympiad 2010). Triangle ABC has perimeter 4. Points X

and Y lie on rays AB and AC, respectively, such that AX = AY = 1. Segments BC and
XY intersect at point M . Prove that the perimeter of either �ABM or �ACM is 2.
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A

B C

X

Y

M

Figure 2.7D. A problem from the All-Russian MO 2010.

What strange conditions have been given. We are told the lengths AX = AY = 1 and
the perimeter of �ABC is 4, and effectively nothing else. The conclusion, which is an
either-or statement, is equally puzzling.

Let us reflect the point A over both X and Y to two points U and V so that AU = AV =
2. This seems slightly better, because AU = AV = 2 now, and the “two” in the perimeter
is now present. But what do we do? Recalling that s = 2 in the triangle, we find that U and
V are the tangency points of the excircle, call it �a . Set IA the excenter, tangent to BC at
T . See Figure 2.7E.

A

B C

X

Y

M

IA

T

U

V

Figure 2.7E. Adding an excircle to handle the conditions.

Looking back, we have now encoded the AX = AY = 1 condition as follows: X and
Y are the midpoints of the tangents to the A-excircle. We need to show that one of �ABM

or �ACM has perimeter equal to the length of the tangent.
Now the question is: how do we use this?
Let us look carefully again at the diagram. It would seem to suggest that in this case,

�ABM is the one with perimeter two (and not �ACM). What would have to be true in
order to obtain the relation AB + BM + MA = AU? Trying to bring the lengths closer
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to the triangle in question, we write AU = AB + BU = AB + BT . So we would need
BM + MA = BT , or MA = MT .

So it would appear that the points X, M , Y have the property that their distance to A

equals the length of their tangents to the A-excircle. This motivates a last addition to our
diagram: construct a circle of radius zero at A, say ω0. Then X and Y lie on the radical axis
of ω0 and �a; hence so does M! Now we have MA = MT , as required.

Now how does the either-or condition come in? Now it is clear: it reflects whether T

lies on BM or CM . (It must lie in at least one, because we are told that M lies inside the
segment BC, and the tangency points of the A-excircle to BC always lie in this segment
as well.) This completes the solution, which we present concisely below.

Solution to Example 2.23. Let IA be the center of the A-excircle, tangent to BC at T ,
and to the extensions of AB and AC at U and V . We see that AU = AV = s = 2. Then XY

is the radical axis of the A-excircle and the circle of radius zero at A. Therefore AM = MT .
Assume without loss of generality that T lies on MC, as opposed to MB. Then AB +

BM + MA = AB + BM + MT = AB + BT = AB + BU = AU = 2 as desired.

While we have tried our best to present the solution in a natural way, it is no secret that
this is a hard problem by any standard. It is fortunate that such pernicious problems are
rare.

2.8 Problems
Lemma 2.24. Let ABC be a triangle with IA, IB , and IC as excenters. Prove that triangle
IAIBIC has orthocenter I and that triangle ABC is its orthic triangle. Hints: 564 103

Theorem 2.25 (The Pitot Theorem). Let ABCD be a quadrilateral. If a circle can be
inscribed† in it, prove that AB + CD = BC + DA. Hint: 467

A

B

CD

Figure 2.8A. The Pitot theorem: AB + CD = BC + DA.

† The converse of the Pitot theorem is in fact also true: if AB + CD = BC + DA, then a circle can be inscribed
inside ABCD. Thus, if you ever need to prove AB + CD = BC + DA, you may safely replace this with the
“inscribed” condition.
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Problem 2.26 (USAMO 1990/5). An acute-angled triangle ABC is given in the plane. The
circle with diameter AB intersects altitude CC ′ and its extension at points M and N , and
the circle with diameter AC intersects altitude BB ′ and its extensions at P and Q. Prove
that the points M , N , P , Q lie on a common circle. Hints: 260 73 409 Sol: p.244

Problem 2.27 (BAMO 2012/4). Given a segment AB in the plane, choose on it a point
M different from A and B. Two equilateral triangles AMC and BMD in the plane are
constructed on the same side of segment AB . The circumcircles of the two triangles intersect
in point M and another point N .

(a) Prove that AD and BC pass through point N . Hints: 57 77

(b) Prove that no matter where one chooses the point M along segment AB, all lines MN

will pass through some fixed point K in the plane. Hints: 230 654

Problem 2.28 (JMO 2012/1). Given a triangle ABC, let P and Q be points on segments
AB and AC, respectively, such that AP = AQ. Let S and R be distinct points on segment
BC such that S lies between B and R, ∠BPS = ∠PRS, and ∠CQR = ∠QSR. Prove
that P , Q, R, S are concyclic. Hints: 435 601 537 122

Problem 2.29 (IMO 2008/1). Let H be the orthocenter of an acute-angled triangle ABC.
The circle �A centered at the midpoint of BC and passing through H intersects the sideline
BC at points A1 and A2. Similarly, define the points B1, B2, C1, and C2. Prove that six
points A1, A2, B1, B2, C1, and C2 are concyclic. Hints: 82 597 Sol: p.244

Problem 2.30 (USAMO 1997/2). Let ABC be a triangle. Take points D, E, F on the
perpendicular bisectors of BC, CA, AB respectively. Show that the lines through A, B, C

perpendicular to EF , FD, DE respectively are concurrent. Hints: 596 2 611

Problem 2.31 (IMO 1995/1). Let A, B, C, D be four distinct points on a line, in that order.
The circles with diameters AC and BD intersect at X and Y . The line XY meets BC at
Z. Let P be a point on the line XY other than Z. The line CP intersects the circle with
diameter AC at C and M , and the line BP intersects the circle with diameter BD at B and
N . Prove that the lines AM , DN , XY are concurrent. Hints: 49 159 134

Problem 2.32 (USAMO 1998/2). Let C1 and C2 be concentric circles, with C2 in the interior
of C1. From a point A on C1 one draws the tangent AB to C2 (B ∈ C2). Let C be the second
point of intersection of ray AB and C1, and let D be the midpoint of AB. A line passing
through A intersects C2 at E and F in such a way that the perpendicular bisectors of DE

and CF intersect at a point M on AB. Find, with proof, the ratio AM/MC. Hints: 659 355

482

Problem 2.33 (IMO 2000/1). Two circles G1 and G2 intersect at two points M and N . Let
AB be the line tangent to these circles at A and B, respectively, so that M lies closer to AB

than N . Let CD be the line parallel to AB and passing through the point M , with C on G1

and D on G2. Lines AC and BD meet at E; lines AN and CD meet at P ; lines BN and
CD meet at Q. Show that EP = EQ. Hints: 17 174
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Problem 2.34 (Canada 1990/3). Let ABCD be a cyclic quadrilateral whose diagonals
meet at P . Let W , X, Y , Z be the feet of P onto AB, BC, CD, DA, respectively. Show
that WX + YZ = XY + WZ. Hints: 1 414 440 Sol: p.245

Problem 2.35 (IMO 2009/2). Let ABC be a triangle with circumcenter O. The points P

and Q are interior points of the sides CA and AB, respectively. Let K , L, and M be the
midpoints of the segments BP , CQ, and PQ, respectively, and let � be the circle passing
through K , L, and M . Suppose that the line PQ is tangent to the circle �. Prove that
OP = OQ. Hints: 78 544 346

Problem 2.36. Let AD, BE, CF be the altitudes of a scalene triangle ABC with circum-
center O. Prove that (AOD), (BOE), and (COF ) intersect at point X other than O. Hints:

553 79 Sol: p.245

Problem 2.37 (Canada 2007/5). Let the incircle of triangle ABC touch sides BC, CA,
and AB at D, E, and F , respectively. Let ω, ω1, ω2, and ω3 denote the circumcircles of
triangles ABC, AEF , BDF , and CDE respectively. Let ω and ω1 intersect at A and P , ω

and ω2 intersect at B and Q, ω and ω3 intersect at C and R.

(a) Prove that ω1, ω2, and ω3 intersect in a common point.
(b) Show that lines PD, QE, and RF are concurrent. Hints: 376 548 660

Problem 2.38 (Iran TST 2011/1). In acute triangle ABC, ∠B is greater than ∠C. Let
M be the midpoint of BC and let E and F be the feet of the altitudes from B and C,
respectively. Let K and L be the midpoints of ME and MF , respectively, and let T be on
line KL such that T A ‖ BC. Prove that T A = T M . Hints: 297 495 154 Sol: p.246


